首页 | 本学科首页   官方微博 | 高级检索  
     

独立分量分析在伤口感染监测电子鼻技术中的应用
引用本文:徐姗,田逢春,杨先一,闫嘉,冯敬伟. 独立分量分析在伤口感染监测电子鼻技术中的应用[J]. 世界科技研究与发展, 2011, 33(4): 584-587
作者姓名:徐姗  田逢春  杨先一  闫嘉  冯敬伟
作者单位:1. 重庆大学通信工程学院,重庆,400030
2. GUELPH大学工程学院,加拿大安大略省圭尔夫市,N1G 2W1
基金项目:重庆市自然科学基金计划重点项目“基于电子鼻技术的人体创伤反应气味模式识别算法研究”(CSTC,2009BA2021);重庆大学研究生科技创新基金“在于电子鼻的伤口感染检测研究”(200911B1A0100326);创新团队建设项目“重庆大学研究生创新团队”(200909C1016)
摘    要:针对传统的伤口感染诊断方法耗时长,操作复杂等问题,提出了一种基于电子鼻和独立分量分析(ICA)的方法来检测常见的伤口感染病原菌。该电子鼻的传感器阵列由6个金属氧化物半导体传感器组成,分别对七种常见病原菌产生响应,然后利用RBF神经网络对经ICA预处理后的数据进行识别。结果表明,ICA对气体传感器阵列测量数据进行预处理,可以简化神经网络的结构,减少计算量,并能提高伤口感染病原茵识别的准确率。

关 键 词:电子鼻  ICA  RBF  伤口感染  传感器  模式识别

Independent Component Analysis for Wound Infection Using Electronic Nose Technology
XU Shan,TIAN Fengchun,YANG Xianyi,YAN Jia,FENG Jingwei. Independent Component Analysis for Wound Infection Using Electronic Nose Technology[J]. World Sci-tech R & D, 2011, 33(4): 584-587
Authors:XU Shan  TIAN Fengchun  YANG Xianyi  YAN Jia  FENG Jingwei
Affiliation:1. College of Communication Engineering, Chongqing University, Chongqing,400030 ; 2. School of Engineering, University of Guelph, Guelph, Canada ON NI G 2W1 )
Abstract:A method based on the electronic nose(e-nose) and independent component analysis(ICA) is presented to solve the time-consuming and complicated operation which appeared in traditional diagnosis method of wound infection. The gas sensor array of this e-nose consists of six metal oxide semiconductor sensors, which respond to the seven common pathogens in wound infection. The RBF (Radius Basis Function) neural network is used for pattern recognition after pre-processing of the ICA. The results show that preprocessing of the gas sensor array measurement data by the ICA can simplify the structure of neural network, with the computation complexity reduced and the recognition accuracy of the wound infection pathogens increased.
Keywords:electronic nose  ICA  RBF  wound infection  sensor  pattern recognition
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号