首页 | 本学科首页   官方微博 | 高级检索  
     

一类一阶非线性微分方程终值问题解的精确渐近行为
引用本文:王荣荣,张志军. 一类一阶非线性微分方程终值问题解的精确渐近行为[J]. 烟台大学学报(自然科学与工程版), 2009, 22(3): 165-168
作者姓名:王荣荣  张志军
作者单位:烟台大学,数学与信息科学学院,山东,烟台,264005
基金项目:国家自然科学基金资助项目 
摘    要:应用分离变量法和Karamata正规变化理论,先得到了φ在0处的渐近行为,其中,φ表示∫0^φ(t)dv/g(v)=v,v〉0的唯一解.从而在g满足适当的结构条件下,得到了一类一阶非线性微分方程终值问题-v(t)=b(t)g(v(t)),v(t)〉0,t〉0,v(∞)=limt→∞v(t)=0唯一解在无穷远处的精确渐近行为.其中,所给的结构条件隐含了g在0处以指数p(p〈1)正规变化,b∈C((0,∞),(0,∞)),并且任意a〉0,∫a^∞b(s)ds〈∞.

关 键 词:一阶非线性微分方程  终值问题  渐近行为

Asympitotic Behaviour of the Solution to a Class of Terminal Value Problems for a First Order Differential Equations
WANG Rong-rong,ZHANG Zhi-jun. Asympitotic Behaviour of the Solution to a Class of Terminal Value Problems for a First Order Differential Equations[J]. Journal of Yantai University(Natural Science and Engineering edirion), 2009, 22(3): 165-168
Authors:WANG Rong-rong  ZHANG Zhi-jun
Affiliation:(School of Mathematics and Informational Science, Yantai University, Yantai 264005, China)
Abstract:Under the new structure conditions on nonlinear term g, by Karamata regular variation theory and the separated variable method, we derive the exact asymptotic behavior of the unique solution at infinity to a class of terminal value problems for first order differential equations - v( t ) = b (t) g ( v (t) ), v (t) 〉 0, t 〉 0, v ( ∞ ) = lim v (t) = 0, where the new structure conditions imply that g is regularly varying at zero with index p(p 〈 1 ), and b is non-negative non-trivial on (0, ∞ ) and ∫a^∞b(s)ds〈∞,arbitary a〉0.The solution can be determined in terms of the solution φ to the following first order problem
∫0^φ(t)dv/g(v)=v,v〉0.
Keywords:first order differential equation  terminal value problem  asymptotic behaviour
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号