首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
泛代数上的Groebner-Shirshov基理论
作者姓名:
L A Bokut
陈裕群
作者单位:
1.华南师范大学数学科学学院
基金项目:
国家自然科学基金项目(11171118);教育部博士点基金项目(20114407110007);广东省高校国际科技合作创新平台(2012g jhz0007);俄罗斯科学基金项目(RSF,N 14-21-00065)
摘 要:
综述了域上或交换代数上的线性(-)代数的相应的簇(范畴)的 Groebner-Shirshov 基理论的新成果,如:结合代数(包括群(半群)代数),自由代数的张量积,李代数,Di-代数,pre-李代数,Rota-Baxter代数,metabelian李代数,L-代数,半环代数,范畴代数,等.以上结果包含了许多应用,尤其是给出了一些著名结论的新的证明.
关 键 词:
Ω-代数
收稿时间:
2014-09-16
本文献已被
CNKI
等数据库收录!
点击此处可从《华南师范大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《华南师范大学学报(自然科学版)》下载
免费
的PDF全文
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号