首页 | 本学科首页   官方微博 | 高级检索  
     

融合多尺度CNN与双向LSTM的唐卡问句分类模型
引用本文:王铁君,闫悦,郭晓然,王铠杰,饶强. 融合多尺度CNN与双向LSTM的唐卡问句分类模型[J]. 科学技术与工程, 2024, 24(22): 9490-9497
作者姓名:王铁君  闫悦  郭晓然  王铠杰  饶强
作者单位:西北民族大学
基金项目:国家自然科学基金(62166035);甘肃省自然科学基金(21JR7RA163)
摘    要:当前大语言模型的兴起为自然语言处理、搜索引擎、生命科学研究等领域的研究者提供了新思路,但大语言模型存在资源消耗高、推理速度慢,难以在工业场景尤其是垂直领域应用等方面的缺点。针对这一问题,提出了一种多尺度CNN与双向LSTM融合的唐卡问句分类模型,本模型将数据的全局特征与局部特征进行融合实现唐卡问句分类任务,全局特征反映数据的本质特点,局部特征关注数据中易被忽视的部分,将二者以拼接的方式融合以丰富句子的特征表示。通过在Thangka数据集与THUCNews数据集上进行实验,结果表明,本模型相较于Bert模型在精确度上略优,在训练时间上缩短了1/20,运算推理时间缩短了1/3。在公开数据集上的实验表明,本模型在文本分类任务上也表现出了较好的适用性和有效性。

关 键 词:文本分类  长短期记忆  多尺度卷积神经网络  唐卡
收稿时间:2023-07-28
修稿时间:2024-05-28

A Thangka Question Classification Model Incorporating Multi-scale CNN and Bidirectional LSTM
Wang Tiejun,Yan Yue,Guo Xiaoran,Wang Kaijie,Rao Qiang. A Thangka Question Classification Model Incorporating Multi-scale CNN and Bidirectional LSTM[J]. Science Technology and Engineering, 2024, 24(22): 9490-9497
Authors:Wang Tiejun  Yan Yue  Guo Xiaoran  Wang Kaijie  Rao Qiang
Affiliation:Northwest Minzu University
Abstract:The current rise of big language models has provided new ideas for researchers in natural language processing, search engines, life science research, and other fields, but big language models have disadvantages in terms of high resource consumption, slow inference speed, and difficulty in application in industrial scenarios, especially in vertical fields. To address this problem, a multi-scale CNN and bi-directional LSTM fusion model for Thangka question classification are proposed. This model fuses global and local features of the data to achieve the Thangka question classification task, with the global features reflecting the essential characteristics of the data and the local features focusing on the easily overlooked parts of the data, and the two are fused in a stitching manner to enrich the feature representation of the sentences. Experiments on the Thangka dataset and the THUCNews dataset show that the model is slightly better than the Bert model in terms of accuracy, 1/20th shorter in training time and 1/3rd shorter in inference time, and also shows good applicability and effectiveness on text classification tasks.
Keywords:text classification  long and short-term memory  multi-scale convolutional neural network  thangka
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号