首页 | 本学科首页   官方微博 | 高级检索  
     

适用于加权样本集处理的加权支持向量机方法
引用本文:鹿卫国,戴亚平,涂序彦,高峰. 适用于加权样本集处理的加权支持向量机方法[J]. 北京理工大学学报, 2005, 25(3): 211-215
作者姓名:鹿卫国  戴亚平  涂序彦  高峰
作者单位:北京理工大学,信息科学技术学院自动控制系,北京,100081;大理学院,云南,大理,650093
基金项目:云南省省院省校科技合作项目
摘    要:为了处理模式识别问题中具有加权信息的样本集,提出一种加权支持向量机(weighted support vector machine,WSVM)算法,并对算法进行了理论分析.通过引入样本与超平面加权距离的概念,使得WSVM算法可以对样本的权值信息进行有效处理.针对未明确给出权值分布的样本集,提出一种基于类间中心距离确定权值的经验方法,对加权支持向量机算法采用交叉验证技术在人工及真实数据上进行了仿真,结果表明,加权支持向量机比标准支持向量机具有更小的误识率和更好的稳定性.

关 键 词:加权支持向量机  模式识别  最大间隔  统计学习  加权距离
文章编号:1001-0645(2005)03-0211-05
收稿时间:2004-05-12
修稿时间:2004-05-12

Weighted Support Vector Machine Method Suitable for Weighted Sample Set
LU Wei-guo,DAI Ya-ping,TU Xu-yan and GAO Feng. Weighted Support Vector Machine Method Suitable for Weighted Sample Set[J]. Journal of Beijing Institute of Technology(Natural Science Edition), 2005, 25(3): 211-215
Authors:LU Wei-guo  DAI Ya-ping  TU Xu-yan  GAO Feng
Affiliation:Department of Automatic Control, School of Information Science and Technology, Beijing Institute of Technology, Beijing100081, China;Department of Automatic Control, School of Information Science and Technology, Beijing Institute of Technology, Beijing100081, China;Department of Automatic Control, School of Information Science and Technology, Beijing Institute of Technology, Beijing100081, China;Dali University, Dali, Yunnan650093, China
Abstract:In order to deal with the different importances of the samples in a sample set in pattern recognition, a weighted support vector machine method is presented and analyzed in this paper. Samples' weights are properly solved through introducing the concept of weighted distance between weighted sample and hyperplane. Under the circumstances that weight distribution is not presented explicitly, an empirical method based on interclass central distance is presented to estimate the weights of samples set. Cross validation simulation on man-made and real data set shows the weighted support vector machine is a new applicable classification method.
Keywords:weighted support vector machine  pattern recognition  maximal margin  statistical learning  weighted distance
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《北京理工大学学报》浏览原始摘要信息
点击此处可从《北京理工大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号