首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于类不平衡学习的情感分析方法
引用本文:李芳,曲豫宾,陈翔,李龙,杨帆. 一种基于类不平衡学习的情感分析方法[J]. 吉林大学学报(理学版), 2021, 59(4): 929-935. DOI: 10.13413/j.cnki.jdxblxb.2020252
作者姓名:李芳  曲豫宾  陈翔  李龙  杨帆
作者单位:1. 桂林电子科技大学 广西可信软件重点实验室, 广西 桂林 541004; 2. 江苏工程职业技术学院 建筑工程学院, 江苏 南通 226001;3. 江苏工程职业技术学院 信息工程学院, 江苏 南通 226001;4. 南通大学 信息科学技术学院, 江苏 南通 226019;5. 江苏工程职业技术学院 图文信息中心, 江苏 南通 226001
摘    要:针对网络评论中普遍存在的负面评论较少而影响力却较大的类不平衡问题,提出一种基于类不平衡学习的情感分析方法.该方法利用深度学习训练过程中的概率输出,以计算样例的信息熵作为影响因子构建交叉信息熵损失函数.在IMDB公开数据集上进行实验验证的结果表明,基于集成信息熵损失函数的双向长短期记忆网络能处理类不平衡问题;对数据的统计...

关 键 词:文本分类  长短期记忆网络  类不平衡  交叉熵损失函数
收稿时间:2020-08-31

A Sentiment Analysis Method Based on Class Imbalance Learning
LI Fang,QU Yubin,CHEN Xiang,LI Long,YANG Fan. A Sentiment Analysis Method Based on Class Imbalance Learning[J]. Journal of Jilin University: Sci Ed, 2021, 59(4): 929-935. DOI: 10.13413/j.cnki.jdxblxb.2020252
Authors:LI Fang  QU Yubin  CHEN Xiang  LI Long  YANG Fan
Abstract:Aiming at the  problem that class imbalance generally existed less negative comments but more influence in the network comments, we proposed a sentiment analysis method based on class imbalance learning. This method used the probability output in the process of deep learning training to calculate the information entropy of the sample. The information entropy was used as the influence factor to construct the cross information entropy loss function. The experimental results on the IMDB public dataset show that the bidirectional long short-term memory network based on the integrated information entropy loss function can deal with class imbalance problem. The statistical analysis of the data shows that this strategy can improve performance of sentiment polarity classification based on the bidirectional long short-term memory network. For the AUC (area under curve) indicator, the median of bidirectional long short-term memory network model with the integrated information entropy loss function is 15.3% higer than that of the deep learning model that does not consider class imbalance.
Keywords:text classification  long short-term memory network  class imbalance  cross-entropy loss function  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《吉林大学学报(理学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号