首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度残差网络的医学超声图像多尺度边缘检测算法
引用本文:李晓峰,李东,王妍玮. 基于深度残差网络的医学超声图像多尺度边缘检测算法[J]. 吉林大学学报(理学版), 2021, 59(4): 900-908. DOI: 10.13413/j.cnki.jdxblxb.2020169
作者姓名:李晓峰  李东  王妍玮
作者单位:1. 黑龙江外国语学院 信息工程系, 哈尔滨 150025;2. 哈尔滨工业大学 计算机科学与技术学院, 哈尔滨 150001;3. 普度大学 机械工程系, 美国印第安纳州 西拉法叶市 IN47906
摘    要:为提高医学超声图像在临床诊断的效果,需先对图像进行优化检测和识别,提出一种基于深度残差网络的医学超声图像多尺度边缘检测算法.首先,通过对原始医学超声图像进行自动标注,构建医学超声图像灰度分布矩阵,利用分布矩阵完成医学超声图像的多尺度分割;其次,构建医学超声图像多尺度边缘的轮廓模型,提取多尺度图像边缘特征;再次,构建深度...

关 键 词:深度残差网络  医学超声图像  多尺度  边缘检测
收稿时间:2020-06-15

Multi-scale Edge Detection Algorithm for Medical Ultrasonic Image Based on Deep Residual Network
LI Xiaofeng,LI Dong,WANG Yanwei. Multi-scale Edge Detection Algorithm for Medical Ultrasonic Image Based on Deep Residual Network[J]. Journal of Jilin University: Sci Ed, 2021, 59(4): 900-908. DOI: 10.13413/j.cnki.jdxblxb.2020169
Authors:LI Xiaofeng  LI Dong  WANG Yanwei
Affiliation:1. Department of Information Engineering, Heilongjiang International University, Harbin 150025, China;
2. School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China;
3. Department of Mechanical Engineering, Purdue University, West Lafayette IN47906, Indianan, USA
Abstract:In order to improve the effect of medical ultrasonic image in clinical diagnosis, it was necessary to optimize the detection and recognition of images, we proposed a multi-scale edge detection algorithm for medical ultrasonic images based on deep residual network. Firstly, the gray scale distribution matrix of medical ultrasonic image was constructed by automatically tagging the original medical ultrasonic image, and the multi-scale segmentation of medical ultrasonic image was completed by using the distribution matrix. Secondly, the contour model of multi-scale edge of medical ultrasonic image was constructed to extract the edge features of multi-scale image. Thirdly, the deep residual network structure was constructed, and the deep residual learning algorithm was used to fuse the underlying image information of ultrasonic image. Finally, multi-scale edge detection was performed on the fused edge image data. The experimental results show that the proposed algorithm has high accuracy of image segmentation, the accuracy of feature extraction is more than 80%, the detection effect of discontinuous area in the image boundary is good, the edge point checking is high, the detection time of the algorithm is short, and the convergence is strong.
Keywords:deep residual network  medical ultrasonic image  multi-scale  edge detection  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《吉林大学学报(理学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号