摘 要: | 网络图像的文本和图像之间有较强的相关性,传统基于内容的图像检索方法往往忽视文本和图像的相关性,而跨模态检索中,文本和图像的底层特征独立获得,并未有效利用两模态之间的语义关联性,基于此,本文提出了一种跨模态语义增强的图像检索方法(CSR),协同约束文本底层特征的线性判别分析项及两模态的典型相关分析项,使得文本语义增强的同时其强语义性通过协同约束迁移到图像特征中,最后通过多类逻辑回归获得文本和图像语义特征,用文本语义特征正则化图像语义特征,进一步提高图像特征的语义判别性。在Wikipedia和Pascal Sentence数据集上进行实验,显示本文方法能有效提高图像检索的平均查准率。
|