首页 | 本学科首页   官方微博 | 高级检索  
     

WSN中传感器节点的弹性神经网络任务分配方法
引用本文:刘美,黄道平. WSN中传感器节点的弹性神经网络任务分配方法[J]. 华南理工大学学报(自然科学版), 2010, 38(6). DOI: 10.3969/j.issn.1000-565X.2010.06.013
作者姓名:刘美  黄道平
作者单位:华南理工大学,自动化科学与工程学院,广东,广州,510640;华南理工大学,自动化科学与工程学院,广东,广州,510640
基金项目:广东省自然科学基金资助项目,茂名市重点科技计划项目 
摘    要:为解决WSN多目标跟踪节点任务分配的竞争冲突问题,提出一种融合了模糊聚类的多弹性子模自组织神经网络节点任务分配方法.通过模糊聚类估计目标数量,建立节点任务分配跟踪精度和能量消耗的综合性能指标,采用非全连接的环形弹性结构自组织神经网络优化监测联盟,用最近邻法对神经元弹性子模进行初始化,根据胜者为王原则动态调整子模的感受域,以快速锁定最优监测联盟,实现多目标的精确跟踪.实验结果表明:文中方法能有效解决多目标跟踪节点任务分配的竞争冲突问题,以及竞争冲突时的系统能耗增加与实时性问题;在随机均匀部署节点拓扑和目标直线运动模式下,文中方法的能耗较最近邻法降低了48.2%~55.9%,较未改进弹性神经网络法降低了37.4%~42.5%,且运算速度提高了19.0%~27.4%.

关 键 词:无线传感器网络  多目标跟踪  任务分配  多弹性子模自组织神经网络  模糊聚类
收稿时间:2009-12-07
修稿时间:2010-02-25

Task Allocation Method of Sensor Nodes Based on MEMSOM Neural Network in WSN
Liu Mei,Huang Dao-ping. Task Allocation Method of Sensor Nodes Based on MEMSOM Neural Network in WSN[J]. Journal of South China University of Technology(Natural Science Edition), 2010, 38(6). DOI: 10.3969/j.issn.1000-565X.2010.06.013
Authors:Liu Mei  Huang Dao-ping
Abstract:Aiming at the competition conflict in node task allocation of WSN Multi-target tracking, the node dynamic alliance synergistic tracking method based on mixed fuzzy C means (FCM) and Multiple Elastic Modules (MEM) Self-Organizing Maps neural network is proposed. First, the target number is estimated by FCM. Second, combination performance index of tracking precision and energy consumption in multi-target tracking node task allocation is established. A self-organizing neural network with non-fully connected neuron ring elastic structure is constructed. Neurons in elastic submodule are initialized with the nearest neighbor method and neurons receptive field are dynamic adjusted with WTA (Winner Take All) principle in the attraction of task allocation combination property index, which makes node optimal alliance be quickly locked. Then the cluster heads are chose to run MTT program on energy principle and multi-target tracking can be achieved accurately. Experimental results show that the energy consumption based on improved MEM is reduced by 55.9% and 42.5% compared with the classical nearest neighbor method and the old MEM neural network method respectively, and calculation speed improves 27.2% compared with the old MEM neural network method. This method can effectively solve the problem of the competition conflict in MTT node task allocation and the increment of system energy consumption and real-time performance when dynamic coalitions compete and conflict for the resource of sensor nodes. The best compromise of system power, precision and real-time is achieved.
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《华南理工大学学报(自然科学版)》浏览原始摘要信息
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号