首页 | 本学科首页   官方微博 | 高级检索  
     

基于压缩感知的图像检索方法研究
引用本文:周燕,曾凡智,卢炎生,周月霞. 基于压缩感知的图像检索方法研究[J]. 中山大学学报(自然科学版), 2014, 53(1)
作者姓名:周燕  曾凡智  卢炎生  周月霞
作者单位:1.佛山科学技术学院 计算机系,广东 佛山 528000
2.华中科技大学 计算机学院,湖北 武汉 430074
基金项目:广东省自然科学基金资助项目(S2012010008639,10152800001000016,10452800001004185);广东省教育厅高校优秀青年创新人才培育资助项目(2012LYM_0132);佛山市科技发展专项基金资助项目(2011AA100051,20121011010070)
摘    要:针对大尺寸图像的特征提取算法复杂度高、特征信息容易缺失的问题,利用压缩感知理论中关于少量测量值可以精确重构原始信号的特性,提出了一种基于压缩感知的图像检索方法。首先对图像进行小波变换、分块预处理;然后构造分块多项式确定性测量矩阵,并对分块图像进行压缩感知快速测量,得到少量的压缩测量值代表图像的特征;最后采用加权距离方法计算图像测量值特征的相似度,实现图像的精确检索。仿真结果表明,该方法在图像检索速度和查准率、查全率等指标上具有更高的性能,能应用于大量复杂图像的检索。

关 键 词:图像检索  压缩感知  测量矩阵  特征提取  特征匹配
收稿时间:2013-07-09;

An Image Retrieval Method Based on Compressive Sensing
ZHOU Yan,ZENG Fanzhi,LU Yansheng,ZHOU Yuexia. An Image Retrieval Method Based on Compressive Sensing[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2014, 53(1)
Authors:ZHOU Yan  ZENG Fanzhi  LU Yansheng  ZHOU Yuexia
Affiliation:1.Department of Computer, Foshan University, Foshan 528000, China;
2.School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract:For solving the problems of the complexity about feature extraction on large size image and the loss of feature information, the characteristics of compressive sensing (CS) theory that a small amount of measurements can accurately reconstruct the original signal is used, and a new image retrieval method based on compressive sensing is proposed. First, the wavelet transformation is performed,and the image is divided into blocks. Then,blocked polynomial deterministic measurement matrix and conduct fast CS measurement on blocked image constructed, and very few compressive measurements which represent the image features can be obtained. Finally, we calculate the similarity between the measurement features by weight distance is calculated, so to implement accurate image retrieval. At the same time, it is proved theoretically that the blocked polynomial deterministic measurement matrix is satisfied to the restricted isometric property (RIP). Experimental results show that this method has higher performance on image precision and image recall, and can be applied to massive complex image retrieval.
Keywords:image retrieval  compressed sensing  measurement matrix  feature extraction  feature matching
本文献已被 CNKI 等数据库收录!
点击此处可从《中山大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《中山大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号