首页 | 本学科首页   官方微博 | 高级检索  
     

KPCA在凿岩台车控制系统传感器故障诊断中的应用
引用本文:徐萍,王友才,杨光照,王凯. KPCA在凿岩台车控制系统传感器故障诊断中的应用[J]. 湖南科技大学学报(自然科学版), 2014, 29(3): 24-28
作者姓名:徐萍  王友才  杨光照  王凯
作者单位:第二炮兵工程大学理学院;第二炮兵工程大学士官学院;
基金项目:国家自然科学基金资助项目(61174207)
摘    要:传感器状态对于凿岩台车的作业有着极其重要的影响,对其展开故障诊断十分必要.核主成分分析(KPCA)方法通过集成算子与非线性核函数计算高维特征空间的主元成分,有效捕捉过程变量中的非线性关系,将其用于传感器4种常见故障的诊断,先用Q统计量进行故障监测,再用T2贡献量百分比变化来识别故障.仿真和实际应用结果表明:KPCA方法具有很好的故障监测与诊断能力.

关 键 词:核主成分分析  凿岩台车  传感器  故障诊断

Application of KPCA in the fault detection and diagnosis for the sensor of the rock drilling jumbo control system
Abstract:The Fault detection and diagnosis for sensors is important for the performance of the rock drilling jumbo seriously. The kernel principal component analysis (KPCA) effectively captures the nonlinear relationship of the process variables, which computes principal component in high dimensional feature space by means of integral operators and nonlinear kernel functions. The KPCA method was used in diagnosing for four common sensor faults. At first its fault was detected by Q statistic, secondly its fault was identified by T2 contribution percent change. The simulation and the practical result shows the KPCA method has good performance for complex control system in sensor fault detection and diagnosis.
Keywords:kernel principal component analysis (KPCA)  rock drilling
本文献已被 CNKI 等数据库收录!
点击此处可从《湖南科技大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《湖南科技大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号