首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
素环上的一类非全局可导映射
作者姓名:
孔亮
张建华
作者单位:
1. 陕西师范大学 数学与信息科学学院, 西安 710119; 2. 商洛学院 应用数学研究所, 陕西 商洛 726000
摘 要:
设R是包含非平凡幂等元且有单位元的素环, Q={T∈R: T2=0}且δ: R→R是一个映射(无可加假设). 用代数分解方法证明了: 如果对任意的A,B∈R且[A,B]B∈Q, 有δ(AB)=δ(A)B+Aδ(B), 则δ是一个可加导子, 其中[A,B]=AB-BA为Lie积.
关 键 词:
素环
可导映射
平方零元
非平凡幂等元
可加导子
收稿时间:
2018-10-22
点击此处可从《吉林大学学报(理学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(理学版)》下载全文
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号