首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度学习的输变电设备紫外放电光斑分割方法
引用本文:裴少通,杨家骏,马子儒,刘云鹏. 基于深度学习的输变电设备紫外放电光斑分割方法[J]. 科学技术与工程, 2022, 22(33): 14759-14766
作者姓名:裴少通  杨家骏  马子儒  刘云鹏
作者单位:华北电力大学河北省分布式储能与微网重点实验室;华北电力大学河北省输变电设备安全防御重点实验室
基金项目:中央高校基本科研业务费专项资金(2020MS093)
摘    要:随着紫外成像技术的发展,高压电力设备对于紫外成像图谱的量化分析提出了更高的要求。紫外图谱的量化分析需要用到除紫外成像仪所输出“光子数”额外的紫外光斑图像信息,所以需要将紫外放电光斑从可见光的背景中分割出来。然而,传统紫外图谱光斑分割方法仍存在复杂背景及小光斑分离困难、特征选取复杂、分割精准度低等问题。基于上述问题,提出了一种基于深度学习的紫外图谱光斑分割提取的方法。首先,采用紫外成像仪拍摄电力设备放电缺陷紫外图谱;其次,分别构建FCN-32s、FCN-16s、FCN-8s 3种全卷积网络(fully convolutional networks, FCN)子模型架构,并利用随机梯度下降法进行模型训练;最后,实现输变电设备放电缺陷紫外图谱主光斑的自主分割提取。经过对FCN 3种子模型架构的训练、测试和对比分析,结果表明:FCN-16s模型为紫外光斑分割提取的最佳模型,测试准确率可达99.34%。结果表明基于深度学习的紫外图谱光斑分割方法准确高效,为紫外光斑的量化提取及电力设备放电缺陷的紫外诊断提供了参考。

关 键 词:紫外成像  深度学习  图像分割  全卷积神经网络
收稿时间:2021-10-14
修稿时间:2022-11-18

Transmission and Distribution Equipment Ultraviolet Discharge Spot Segmentation Method Based on Deep Learning
Pei Shaotong,Yang Jiajun,Ma Ziru,Liu Yunpeng. Transmission and Distribution Equipment Ultraviolet Discharge Spot Segmentation Method Based on Deep Learning[J]. Science Technology and Engineering, 2022, 22(33): 14759-14766
Authors:Pei Shaotong  Yang Jiajun  Ma Ziru  Liu Yunpeng
Affiliation:Hebei Province Key Laboratory of Distributed Energy Storage and Microgrid;Hebei Provincial Key Laboratory of Power Transmission Equipment Security Defense
Abstract:With the development of ultraviolet imaging technology, high-voltage power equipment has put forward higher requirements for the quantitative analysis of ultraviolet imaging spectra. The quantitative analysis of the ultraviolet spectrum needs to use extra ultraviolet spot image information in addition to the "photon number" output by the ultraviolet imager, so the ultraviolet discharge spot needs to be separated from the visible light background. However, the traditional UV spectrum spot segmentation methods still have problems such as complex background and small spot separation difficulties, complex feature selection, and low segmentation accuracy. Based on the above problems, a method for segmentation and extraction of ultraviolet spectra based on deep learning was proposed. First, UV spectra of electrical equipment discharge defects were shot by using UV imager. Then, three FCN sub-model architectures (FCN-32s, FCN-16s, and FCN-8s) were constructed respectively, and the stochastic gradient descent method was used for model training. Finally, the autonomous segmentation and extraction of the main spot of the ultraviolet spectra of the discharge defects of the power transmission and transformation equipment was realized. After training, testing, and comparative analysis of FCN"s three sub-model architecture, it is concluded that the FCN-16s model is the best model for UV spot segmentation and extraction, and the test accuracy rate can reach 99.34%. The results show that the ultraviolet spectroscopy spot segmentation method based on deep learning is accurate and efficient, which provides a reference for the quantitative extraction of ultraviolet spots and the ultraviolet diagnosis of electrical equipment discharge defects.
Keywords:ultraviolet imagery   deep learning   image segmentation   full convolutional neural network
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号