首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spatially resolved electronic structure inside and outside the vortex cores of a high-temperature superconductor
Authors:Mitrović V F  Sigmund E E  Eschrig M  Bachman H N  Halperin W P  Reyes A P  Kuhns P  Moulton W G
Institution:Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA.
Abstract:Puzzling aspects of high-transition-temperature (high-Tc) superconductors include the prevalence of magnetism in the normal state and the persistence of superconductivity in high magnetic fields. Superconductivity and magnetism generally are thought to be incompatible, based on what is known about conventional superconductors. Recent results, however, indicate that antiferromagnetism can appear in the superconducting state of a high-Tc superconductor in the presence of an applied magnetic field. Magnetic fields penetrate a superconductor in the form of quantized flux lines, each of which represents a vortex of supercurrents. Superconductivity is suppressed in the core of the vortex and it has been suggested that antiferromagnetism might develop there. Here we report the results of a high-field nuclear-magnetic-resonance (NMR) imaging experiment in which we spatially resolve the electronic structure of near-optimally doped YBa2Cu3O7-delta inside and outside vortex cores. Outside the cores, we find strong antiferromagnetic fluctuations, whereas inside we detect electronic states that are rather different from those found in conventional superconductors.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号