首页 | 本学科首页   官方微博 | 高级检索  
     

基于集成学习与生成对抗网络的皮肤镜图像分类方法
引用本文:龚安,姚鑫杰,杜波,李维浩. 基于集成学习与生成对抗网络的皮肤镜图像分类方法[J]. 科学技术与工程, 2021, 21(3): 1071-1076. DOI: 10.3969/j.issn.1671-1815.2021.03.034
作者姓名:龚安  姚鑫杰  杜波  李维浩
作者单位:中国石油大学(华东)计算机科学与技术学院,青岛266580;中国石油大学(华东)计算机科学与技术学院,青岛266580;大理白族自治州人民医院,大理 671000;中国石油大学(华东)计算机科学与技术学院,青岛266580
基金项目:国家科技重大专项(No.2017ZX05013-001)、中石油重大科技项目(ZD2019-183-004)、中央高校基本科研业务费专项资金(20CX05019A)
摘    要:皮肤镜是辅助皮肤科医生诊断的有效途径,但是人工分类高度依赖医生的临床经验,并且皮肤镜图像本身的复杂性给分类提出了巨大的挑战.为了解决皮肤镜图像分类问题,基于集成学习提出了一种集成投票块的皮肤镜图像分类方法.首先,针对ISIC 2019提供的皮肤镜图像进行预处理,为了缓解数据集较少且分布不均的问题,使用生成对抗网络和旋转...

关 键 词:皮肤镜图像  集成学习  生成对抗网络  迁移学习  卷积神经网络
收稿时间:2020-03-14
修稿时间:2020-06-17

Dermoscopy image classification method based on ensemble learning and generative adversarial networks
Gong An,Yao Xinjie,Du Bo,Li Weihao. Dermoscopy image classification method based on ensemble learning and generative adversarial networks[J]. Science Technology and Engineering, 2021, 21(3): 1071-1076. DOI: 10.3969/j.issn.1671-1815.2021.03.034
Authors:Gong An  Yao Xinjie  Du Bo  Li Weihao
Affiliation:China University of Petroleum (East China);People''s Hospital of Dali Bai Autonomous Prefecture
Abstract:Dermoscopy is an effective way to assist dermatologists'' diagnosis, but artificial classification is highly dependent on the clinical experience of the doctor, and the complexity of the dermoscopy image itself poses a huge challenge to classification. In order to solve the problem of dermoscopy image classification, a dermoscopy image classification method based on voting block integration is proposed based on ensemble learning. First, the dermoscopy images provided by ISIC 2019 were pre-processed. In order to alleviate the problem of less data sets and uneven distribution, the data set is augmented by generating adversarial networks and rotating images. Then, based on the idea of transfer learning, multiple convolutional neural networks are trained, and multiple convolutional neural networks with better classification results are selected to form voting blocks. Through voting block integration, the dermoscopy image is classified. The experimental results show that the accuracy, sensitivity, and specificity of the method can reach 0.925, 0.563, and 0.927, respectively. Compared with a single convolutional neural network model, each evaluation criterion is improved, which provides an effective solution for dermoscopy image classification.
Keywords:dermoscopy images  ensemble learning  generating adversarial networks  transfer learning  convolutional neural networks
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号