首页 | 本学科首页   官方微博 | 高级检索  
     

边缘计算下面向位置隐私保护的中继分流模型
引用本文:林文敏,张松,刘加邦. 边缘计算下面向位置隐私保护的中继分流模型[J]. 应用科学学报, 2020, 38(5): 724-741. DOI: 10.3969/j.issn.0255-8297.2020.05.006
作者姓名:林文敏  张松  刘加邦
作者单位:1. 杭州师范大学 阿里巴巴商学院, 杭州 311121;2. 南京大学 计算机科学与技术系, 南京 210023
基金项目:国家自然科学基金面上项目(No.61672276);江苏省重点研发计划项目(No.BE2019104)资助
摘    要:随着基于位置服务(location-based services, LBS)的广泛使用,人们越来越关注位置隐私的保护问题.基于假人的位置隐私保护方法通过在真实位置信息中混入多个虚假位置信息,能够有效保护用户位置隐私.然而,传统基于假人的位置隐私保护方案大多部署在云端的远程服务器中,其面临着用户获取结果时延过高的性能瓶颈.针对上述问题,本文将基于假人的位置隐私保护方法迁移到边缘计算环境下进行部署,并针对边缘服务器的服务能力与覆盖范围具有上限的特点,提出了面向位置隐私保护的中继分流模型,实现了其中的分流方法,并在真实数据集中运行了本文所提出的方法.实验结果表明该方法在保证用户位置隐私保护效果的同时,可以降低用户获取结果的时延.

关 键 词:边缘计算  位置隐私保护  计算分流  k-匿名
收稿时间:2020-06-15

Relay-Assisted Offloading Model for Location Privacy Protection under Edge Computing
LIN Wenmin,ZHANG Song,LIU Jiabang. Relay-Assisted Offloading Model for Location Privacy Protection under Edge Computing[J]. Journal of Applied Sciences, 2020, 38(5): 724-741. DOI: 10.3969/j.issn.0255-8297.2020.05.006
Authors:LIN Wenmin  ZHANG Song  LIU Jiabang
Affiliation:1. Alibaba Business School, Hangzhou Normal University, Hangzhou 311121, China;2. Department of Computer Science and Technology, Nanjing University, Nanjing 210023, China
Abstract:With the widespread adoption of location-based services, people pay more and more attention to the issue of location privacy protection. The dummy based location privacy protection method could achieve the goal via mixing fake locations with users; real location. However, most of traditional dummy based location privacy protection methods are deployed in remote cloud servers, which brings performance limitation issue such as long delay for users to obtain computation results. To address this problem, we consider migrating the dummy based location privacy protection method from cloud servers to edge servers. Moreover, in view of the upper limit of service capacity and coverage of edge servers, we propose a relay offloading model for location privacy protection. We implement the offloading method and run our method with a real data set. Experimental results verify that our method can reduce the delay for user to obtain computation results while ensuring the effect of user;s location privacy protection.
Keywords:edge computing  location privacy protection  computation offloading  k-anonymity  
本文献已被 CNKI 等数据库收录!
点击此处可从《应用科学学报》浏览原始摘要信息
点击此处可从《应用科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号