首页 | 本学科首页   官方微博 | 高级检索  
     

基于HMM的自适应软件决策模型
引用本文:王平凡,刘淑芬. 基于HMM的自适应软件决策模型[J]. 吉林大学学报(理学版), 2018, 56(3): 645-649
作者姓名:王平凡  刘淑芬
作者单位:1. 河南理工大学 计算机科学与技术学院, 河南 焦作 454000; 2. 吉林大学 计算机科学与技术学院, 长春 130012
摘    要:为实现软件的自适应,针对复杂多变的运行环境,提出一个基于隐Markov模型(HMM)的自适应软件决策模型.首先运用高斯混合模型(GMM)对初始环境进行分类,然后使用softmax回归对感知环境进行归类划分处理,最后利用HMM代替人工干预进行软件决策.实验结果表明,该自适应软件模型在感知环境发生变化的条件下,能很好地实现软件自适应决策.

关 键 词:高斯混合模型   自适应软件   softmax回归   隐Markov模型  
收稿时间:2017-04-18

Adaptive Software Decision Model Based on HMM
WANG Pingfan,LIU Shufen. Adaptive Software Decision Model Based on HMM[J]. Journal of Jilin University: Sci Ed, 2018, 56(3): 645-649
Authors:WANG Pingfan  LIU Shufen
Affiliation:1. College of Computer Science & Technology, Henan Polytechnic University, Jiaozuo 454000, Henan Province, China;[JP]2. College of Computer Science and Technology, Jilin University, Changchun 130012, China
Abstract:In order to realize the adaptive software, we proposed an adaptive software decision model based on hidden Markov model(HMM) for the complex and changeable operating environment.Firstly, the Gaussian mixture model (GMM) was used to classify the initial environment. Secondly, the softmax regression was used to classify and divide the perceptual environment. Finally, we used HMM instead of the manual intervention to make software decisions. The experimental results show that the adaptive software model can achieve the adaptive software decision well under the condition of the change of the perceptual environment.
Keywords:hidden Markov model (HMM)  softmax regression  adaptive software  Gaussian mixture model (GMM)
本文献已被 CNKI 等数据库收录!
点击此处可从《吉林大学学报(理学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号