首页 | 本学科首页   官方微博 | 高级检索  
     

基于压缩感知算法的传感器网络异常事件检测
作者姓名:孟海涛  邵星
作者单位:盐城工学院 信息工程学院, 江苏 盐城 224000
摘    要:为改善传感器网络异常事件检测效果,提出一种基于压缩感知算法的传感器网络异常事件检测模型.首先采集传感器网络状态信息,并采用压缩感知算法对信息进行采样和重构,在减少传感器网络异常事件检测信息的同时,删除一些无效信息;然后从重构后的传感器网络异常事件检测信息中提取特征,组成传感器网络异常事件检测的特征向量;最后采用极限学习机建立传感器网络异常事件检测模型,并进行传感器网络异常事件检测仿真实验,分析模型的性能.实验结果表明,压缩感知算法可加快传感器网络异常事件检测速度,且传感器网络异常事件检测率高于95%,明显高于其他传感器网络异常事件检测模型.

关 键 词:检测特征   压缩感知算法  异常事件   极限学习   传感器网络  
收稿时间:2016-11-21
本文献已被 CNKI 等数据库收录!
点击此处可从《吉林大学学报(理学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号