摘 要: | 针对目前遥感图像分类算法存在精度低、 速度慢等问题, 提出一种基于量子粒子群算法的遥感图像分类算法, 以提高遥感图像的分类效果. 首先分析目前遥感图像分类算法存在的不足及其原因; 然后提取多种类型的遥感图像原始特征, 采用量子粒子群算法对特征进行筛选, 以提取对遥感图像分类结果较重要的特征; 最后采用最小二乘支持向量机(LSSVM)建立遥感图像分类器, 实现遥感图像分类和识别, 并进行遥感图像分类的仿真对比实验. 实验结果表明, 该算法克服了当前遥感图像分类算法存在的局限性, 大幅度提高了遥感图像的分类精度, 有效减少了图像分类误差, 提高了图像分类效率.
|