首页 | 本学科首页   官方微博 | 高级检索  
     

对数非线性薛定谔方程基态解的数值解法
引用本文:冯子旭,何维清,张世全. 对数非线性薛定谔方程基态解的数值解法[J]. 四川大学学报(自然科学版), 2021, 58(5): 051003
作者姓名:冯子旭  何维清  张世全
作者单位:四川大学数学学院,成都,610064
摘    要:针对对数非线性薛定谔方程,本文构造了一种求基态解的数值解法.该方法首先对原始能量泛函进行正则化处理,然后使用归一化梯度流方法来求正则化后的基态解.在求解的每个时间步我们采用向后欧拉傅里叶谱方法的隐式数值格式,并通过不动点迭代求解. 我们分析了正则化方法的能量误差,并通过数值模拟验证了本文方法的可靠性.

关 键 词:基态解  对数薛定谔方程  正则化  归一化梯度流  后向欧拉傅里叶谱方法
收稿时间:2021-01-13
修稿时间:2021-04-08

Numerical method for the ground state solution of Logarithmic nonlinear Schrodinger equation
FENG Zi-Xu,HE Wei-Qing,ZHANG Shi-Quan. Numerical method for the ground state solution of Logarithmic nonlinear Schrodinger equation[J]. Journal of Sichuan University (Natural Science Edition), 2021, 58(5): 051003
Authors:FENG Zi-Xu  HE Wei-Qing  ZHANG Shi-Quan
Affiliation:School of Mathematics, Sichuan University,School of Mathematics, Sichuan University
Abstract:In this paper, we construct a numerical method for computing the ground state solution of Logarithmic nonlinear Schr"odinger equation. We first regularize the energy functional of the model, then compute the ground state solution by using the normalized gradient flow method. At each time step, we propose an implicit numerical scheme of the backward Euler Fourier spectral method, which is solved by fixed point iteration. In the end, we prove the estimation of energy error, and provide numerical simulation to verify the reliability of our method.
Keywords:ground state  logarithmic   Schr
本文献已被 万方数据 等数据库收录!
点击此处可从《四川大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《四川大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号