首页 | 本学科首页   官方微博 | 高级检索  
     

基于Spark的地震数据重建方法的并行化
引用本文:廉西猛. 基于Spark的地震数据重建方法的并行化[J]. 科学技术与工程, 2023, 23(8): 3168-3176
作者姓名:廉西猛
作者单位:中国石油化工股份有限公司胜利油田物探研究院
基金项目:中国石油化工股份有限公司项目(P21066-2、P22185)
摘    要:地震勘探技术发展早已进入TB(terabytes)级数据时代,并逐步迈向PB(petabytes)级。为提升海量数据处理效率,将地震数据处理算法进行并行化是一种广泛采用的手段。但是一些复杂度较高的算法,诸如地震数据重建类方法等,并行化难度较大,加速效果不理想。Spark作为一种面向大数据处理的通用分布式并行计算技术,可以应用于并可简化地震数据处理算法并行化过程。借助于Spark的优势,通过两个实例讨论了基于Spark的地震数据重建并行化方法,提出了对于具有复杂输入输出组织数据方式的算法的并行化方法,提升了算法效率。研究成果为该类算法的Spark并行化开发提供了有益借鉴。

关 键 词:地震数据重建  Spark技术  并行  面元均化  五维规则化
收稿时间:2022-06-08
修稿时间:2023-01-03

Parallelization for seismic data reconstruction methods based on Spark
Lian Ximeng. Parallelization for seismic data reconstruction methods based on Spark[J]. Science Technology and Engineering, 2023, 23(8): 3168-3176
Authors:Lian Ximeng
Affiliation:Shengli Geophysical Research Institute of SINOPEC
Abstract:With the development of seismic exploration technology, more and more seismic data of terabytes or even petabytes are acquired and need to be processed. To improve the efficiency of massive data processing, parallelization of processing algorithms is a widely used solution. However, some algorithms with high complexity, such as data reconstruction methods, are so difficult to be parallelized that desired acceleration effect cannot be achieved. Fortunately, Spark, a general distributed parallel computing technology for big data processing, can make the parallelization of seismic data processing algorithms easier and more effective. By virtue of the advantages of Spark, the parallelization methods of seismic data reconstruction algorithms are discussed in this paper with two sample algorithms and approaches to deal with complicated organizations of input or output data are proposed. Efficiency of the algorithm are significantly improved by applying these methods, which also provide useful references for the development of Spark parallelization for this kind of algorithms.
Keywords:seismic data reconstruction   Spark   parallelization   bin averaging   5D regularization
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号