首页 | 本学科首页   官方微博 | 高级检索  
     

基于径向基网络的表面肌电信号处理
引用本文:杨广映,杨善晓. 基于径向基网络的表面肌电信号处理[J]. 江西科学, 2008, 26(4): 566-568
作者姓名:杨广映  杨善晓
作者单位:台州学院物理与电子工程学院,浙江,台州,318000;台州学院物理与电子工程学院,浙江,台州,318000
基金项目:浙江省高等学校青年教师资助计划
摘    要:利用AR模型对实验所采集到的原始二通道表面肌电信号(SEMG)加以分析,提取AR系数作为特征值,将其作为训练样本输入到RBF神经网络进行训练,用此网络对前臂的伸臂和曲臂两种运动模式的表面肌电信号进行模式分类。实验表明,基于径向基函数RBF神经网络分类准确率比BP神经网络更高,具有较强的鲁棒性和自适应能力,可以有效识别肌肉的单动作模式。

关 键 词:表面肌电信号  AR模型  RBF神经网络

Surface Electromyography Analytical Method based on the Method of RBF Neural Network
YANG Guang-ying,YANG Shan-xiao. Surface Electromyography Analytical Method based on the Method of RBF Neural Network[J]. Jiangxi Science, 2008, 26(4): 566-568
Authors:YANG Guang-ying  YANG Shan-xiao
Affiliation:(School of Physical & Electronics Engineefing,Taizhou University,Zhejiang Taizhou 318000 PRC)
Abstract:This paper provides a new feature extraction method to extract the eigenvectors(AR coefficient)from the original two-channel surface electromyography(SEMG)signals.We use the AR coefficients as the input to train RBF Neural Network and to classify the two movement patterns(flexor carpi,extensor carpi)of the forearm.The experiment shows that RBF Neural Network has a more high discrimination rate,robustness and adaptability compared with BP Neural Network.Muscle's action pattern also can be effectively recognized by this method.
Keywords:Surface Electromyography Signal(SEMG)  AR model  RBF Neural Network
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号