首页 | 本学科首页   官方微博 | 高级检索  
     

基于粗糙集与灰色动态预测模型在电力负荷短期预测的应用
引用本文:董庆雄,曾嘉俊,张元标,张文川. 基于粗糙集与灰色动态预测模型在电力负荷短期预测的应用[J]. 世界科技研究与发展, 2010, 32(1): 84-87
作者姓名:董庆雄  曾嘉俊  张元标  张文川
作者单位:1. 暨南大学珠海学院数学建模创新实践基地,珠海,519070;暨南大学珠海学院电气工程及其自动化研究所,珠海,519070
2. 暨南大学珠海学院数学建模创新实践基地,珠海,519070;暨南大学珠海学院包装工程研究所,珠海,519070
摘    要:针对电力系统多因素负荷预测问题的复杂性,结合粗糙集理论与GM(1,N)模型各自的优势,提出一种基于粗糙集理论的GM(1,N)预测模型.采取粗糙集理论对影响负荷预测因素进行简约,利用GM(1,N)建立简约后的因素变量和负荷之间的关系建立模型,并与GM(1,1)预测模型进行了比较,结果反映基于粗糙集理论的GM(1,N)预测模型的优越性,精准度达到94.055%.

关 键 词:负荷预测  粗糙集理论  GM(1,N)  GM(1,1)

Application of Rough Set Theory and Dynamic Grey Model in the Power System Load Forecasting
DONG Qingxiong,ZENG Jiajun,ZHANG Yuanbiao,ZHANG Wenchuan. Application of Rough Set Theory and Dynamic Grey Model in the Power System Load Forecasting[J]. World Sci-tech R & D, 2010, 32(1): 84-87
Authors:DONG Qingxiong  ZENG Jiajun  ZHANG Yuanbiao  ZHANG Wenchuan
Affiliation:1. Mathematical Modeling Innovative Practice Base of Zhuhai College Jinan University , Zhuhai,519070;2. Electric Automatization Institute of Jinan University, Guangdong Zhuhai, 519070 ;3. Packaging Engineering Institute of Zhuhai College Jinan University, Zhuhai 519070)
Abstract:Through combined with rough set theory and GM(1,N)model for their own advantages,this peper applies GM(1,N)prediction model based on the rough set theory.Taking advantages of the rough set theory to select the factors for the power system load forecasting.Through GM(1,N)prediction model,establishing the relation between the factors selected and the power load then compares it with GM(1,1).Finally,The result reflects the superiority of the rough set theory and dynamic grey model in the power system load forecasting,and it showed that the method accuracy is 94.055%.
Keywords:GM(1,N)  GM(1,1)  load forecasting  rough set theory  GM(1,N)  GM(1,1)
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号