首页 | 本学科首页   官方微博 | 高级检索  
     

基于流形正则化非负矩阵分解预测药物-靶蛋白作用关系
引用本文:闫效莺,吴莹,李润洲. 基于流形正则化非负矩阵分解预测药物-靶蛋白作用关系[J]. 科学技术与工程, 2019, 19(33): 325-329
作者姓名:闫效莺  吴莹  李润洲
作者单位:西安石油大学计算机学院,西安 710065;西北工业大学自动化学院,西安 710072;西安石油大学计算机学院,西安,710065
基金项目:国家自然科学基金项目(51707158),陕西省教育厅项目(17JK0603)
摘    要:识别药物-靶蛋白作用关系是当前药物研究的重要内容,其可帮助识别已有药物的新功能,发现药物的"偏靶蛋白"等。现有预测算法对新药物的作用靶蛋白,及新靶蛋白的作用药物预测存在困难,由此提出一种新奇的基于流形正则化非负矩阵分解的新药物/新靶蛋白作用关系预测算法,该方法首先通过聚类算法构建新药物/新靶蛋白的初始作用标签,然后设计引入流形学习正则化约束的非负矩阵分解算法预测药物-靶蛋白作用关系,最后在四个经典数据集中测试,并与最新预测算法BLM-NII、RLS-WNN和WKNKN+WGRMF算法进行比较,证明本文算法可获取较高的预测精度。

关 键 词:药物  靶蛋白  聚类  流形学习正则化  非负矩阵分解
收稿时间:2019-03-24
修稿时间:2019-08-30

Prediction of Drug-Target Interaction with Manifold Regularized Non-Negative Matrix Factorization
Yan xiaoying,and. Prediction of Drug-Target Interaction with Manifold Regularized Non-Negative Matrix Factorization[J]. Science Technology and Engineering, 2019, 19(33): 325-329
Authors:Yan xiaoying  and
Abstract:Identification of drug-target Interactions (DTIs) is very important for drug research, which can help to find the new uses for old drugs or to discover the off-target of a given drug. Currently, the prediction algorithms have difficulty in finding interactions for new drugs and new targets. We proposed a novel method that uses manifold regularized nonnegative matrix factorization framework to predict potential targets/drugs for new drugs/targets. Firstly, it used clustering approaches to construct interaction profiles for new drugs/targets; then adopted the manifold regularized nonnegative matrix factorization algorithm to predict the drug-target Interaction; Finally, extensively testing was applied on four datasets. Through comparison with other recently proposed BLM-NII,RLS-WNN and WKNKN+WGRMF, our algorithm attains high prediction performance in terms of AUPR.
Keywords:drug target clustering manifold learning regularized nonnegative matrix factorization
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号