首页 | 本学科首页   官方微博 | 高级检索  
     

加速交替最小二乘法推荐系统优化设计
引用本文:张宏烈,刘佳星,刘艳菊,张惠玉. 加速交替最小二乘法推荐系统优化设计[J]. 科学技术与工程, 2019, 19(14): 257-261
作者姓名:张宏烈  刘佳星  刘艳菊  张惠玉
作者单位:齐齐哈尔大学计算机与控制工程学院,齐齐哈尔,161006;齐齐哈尔大学通信与电子工程院 ,齐齐哈尔,161006
基金项目:国家自然科学基金;黑龙江省自然科学基金面上项目
摘    要:推荐系统帮助用户在海量数据中更便捷地找到他们最感兴趣的内容。但推荐系统存在可信度低、推荐结果的可解释性不足、可扩展性不好、随着用户数量的增大,计算时间增长且精度较低、数据稀疏性和冷启动等问题。为此提出基于交替最小二乘法(alternating least squares,ALS)的推荐系统优化算法,在ALS基础上对两个部分进一步优化:第一部分采用LBFGS (limited-memory broyden-fletcher-goldfarb-shanno)算法使搜索方向快速计算出来;第二部分采用阻尼牛顿法求解步长因子。在Spark平台上加以验证,取得较好效果。

关 键 词:推荐系统  交替最小二乘法  L-BFGS  阻尼牛顿法  Spark
收稿时间:2018-11-20
修稿时间:2019-03-20

The Optimal Design of an Accelerated Alternating Least Square Recommendation System
zhang honglie,liu jiaxing,liu yanju and zhang huiyu. The Optimal Design of an Accelerated Alternating Least Square Recommendation System[J]. Science Technology and Engineering, 2019, 19(14): 257-261
Authors:zhang honglie  liu jiaxing  liu yanju  zhang huiyu
Affiliation:Qiqihar University Computer and Control Engineering College,Qiqihar University Computer and Control Engineering College,Qiqihar University Computer and Control Engineering College,Qiqihar University Communication and Electronic Engineering College
Abstract:Recommendation system came into being in the era of big data, core meaning is to help users more convenient to find them in huge amounts of data are most interested in. Although recommendation systems application scenario is widespread, but there is insufficient credibility is low, and recommend the results can be interpreted, poor scalability, and the increase of the number of users, the computing time and low accuracy, data sparsity and cold start and other issues. This paper proposes a recommendation system optimization algorithm based on alternating least squares ALS, which further optimizes the two parts based on ALS: the first using L-BFGS(Limited-memory Broyden-Fletcher-Goldfarb-Shanno) algorithm allows the search direction quickly calculated; Secondly, the damped Newton method is used to solve the step factor.
Keywords:recommendation  system alternating  least squares  l-bfgs  damped newton  method spark
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号