首页 | 本学科首页   官方微博 | 高级检索  
     

空间环境下惯性展开机构动态性能可靠性分析
引用本文:林志树,于霖冲. 空间环境下惯性展开机构动态性能可靠性分析[J]. 厦门理工学院学报, 2011, 19(4): 23-26
作者姓名:林志树  于霖冲
作者单位:厦门理工学院机械工程系,福建厦门,361024
摘    要:提出惯性展开机构运动参数动态可靠性分析方法,建立了惯性展开机构运动参数动态可靠性分析模型.将驱动力(矩)、摩擦和阻尼力(矩)等作为随机变量,应用蒙特卡罗方法,取得动态参数样本,再利用人工神经网络方法,用随机抽取的样本对网络进行训练,统计网络输出的动态参数分布,得到惯性展开机构动态可靠度.空间站惯性展开机构动态可靠度计算实例表明,该方法简单实用,计算成本低.

关 键 词:展开机构  空间环境  惯性  模型  人工神经网络  可靠性理论

Dynamical Reliability of Inertia Expanding Mechanism in Space Environment
LIN Zhi-shu,YU Lin-chong. Dynamical Reliability of Inertia Expanding Mechanism in Space Environment[J]. Journal of Xiamen University of Technology, 2011, 19(4): 23-26
Authors:LIN Zhi-shu  YU Lin-chong
Affiliation:( Faeuhy of Mechanic Engineering, Xiamen University of Technology, Xiamen 361024, China)
Abstract:Methodology of inertia expanding mechanism kinematical parameters dynamical reliability analysis was presented. A general model of kinematical parameters dynamical reliability was introduced for inertia expanding mechanism. Stochastic variables including driven forces, torques, frictions and damps were considered basically. First, Monte Carlo(MC) method was applied to generate stochastic variables and dynamical responds of mechanism. Then, the application of Artificial Neural Network(ANN) was motivated by the approximate concepts inherent in reliability analysis and time consuming repetition required for MC. Finally, statistical distribution of kinematical parameters was yielded from the outputs of ANN. As an example, a space station inertia expanding mechanism model was employed to test this method. The results proved that this method could be used to account for the complicated dynamical reliability analysis at a reasonable computational cost.
Keywords:expand mechanism  space environment  inertia  model  artificial neural network  reliability theory
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号