首页 | 本学科首页   官方微博 | 高级检索  
     

基于多元统计分析的故障检测方法
引用本文:纪洪泉,何潇,周东华. 基于多元统计分析的故障检测方法[J]. 上海交通大学学报, 2015, 49(6): 842-848
作者姓名:纪洪泉  何潇  周东华
作者单位:(清华大学 自动化系, 清华信息科学与技术国家实验室, 北京 100084)
基金项目:国家自然科学基金资助项目(61490701,61210012,61290324,61473163)
摘    要:作为数据驱动故障检测方法中的重要分支,基于多元统计分析的故障检测方法主要包括主元分析、偏最小二乘、独立元素分析和费舍尔判别分析.本文回顾了上述几种方法,包括数据模型、故障检测的原理及方法优劣.仿真实验说明了几种方法的特性及其故障检测的效果,并探讨了基于数据故障检测方法中的一些问题.

关 键 词:   多元统计分析  主元分析  偏最小二乘  独立元素分析  费舍尔判别分析  
收稿时间:2015-01-15

Fault Detection Techniques Based on Multivariate Statistical Analysis
JI Hong quan,HE Xiao,ZHOU Dong hua. Fault Detection Techniques Based on Multivariate Statistical Analysis[J]. Journal of Shanghai Jiaotong University, 2015, 49(6): 842-848
Authors:JI Hong quan  HE Xiao  ZHOU Dong hua
Affiliation:(Department of Automation, TNList, Tsinghua University, Beijing 100084, China)
Abstract:Abstract: As an important branch of data-driven fault detection methods, multivariate statistical analysis-based fault detection methods mainly include principal component analysis, partial least squares, independent component analysis and fisher discriminant analysis. In this paper, the data model and fault detection mechanism of each method mentioned above were reviewed. Several properties of these methods were revealed intuitively using simulation results, and their fault detection abilities were illustrated. Finally, several problems related to data-driven fault detection methods were discussed.
Keywords:multivariate statistical analysis  principal component analysis  partial least squares  independent component analysis  Fisher discriminant analysis  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《上海交通大学学报》浏览原始摘要信息
点击此处可从《上海交通大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号