首页 | 本学科首页   官方微博 | 高级检索  
     

一种双隐层RBF神经网络的算法研究
引用本文:赵红星,郑丽英,伏楠. 一种双隐层RBF神经网络的算法研究[J]. 首都师范大学学报(自然科学版), 2013, 34(2): 8-13
作者姓名:赵红星  郑丽英  伏楠
作者单位:兰州交通大学电子与信息工程学院,甘肃兰州,730070
摘    要:针对RBF神经网络的结构和学习算法的缺点,提出了一种双隐层RBF神经网络(DRBF)模型,并结合网络结构的动态更新策略对网络结构进行实时更新,以梯度下降法对网络参数进行修正,即确保了网络结构的最简化,提高了网络的逼近精度和泛化能力,同时也加快了网络的训练速度.将本算法和传统RBF神经网络算法应用于非线性逼近和电信企业客户流失分类进行性能比较,实验仿真结果证明了本算法的有效性和高效性.

关 键 词:双隐层RBF  动态更新  梯度下降法  非线性逼近  客户流失

The Study of Two Hidden Layer of RBF Neural Network Algorithm
Zhao Hongxing , Zheng Liying , Fu Nan. The Study of Two Hidden Layer of RBF Neural Network Algorithm[J]. Journal of Capital Normal University(Natural Science Edition), 2013, 34(2): 8-13
Authors:Zhao Hongxing    Zheng Liying    Fu Nan
Affiliation:Zhao Hongxing Zheng Liying Fu Nan (Electronic and Information Engineering College, Lanzhou Jiaotong University, Gansu Lanzhou 730070)
Abstract:To the disadvantage of the RBF neural network structure and learning algorithms, a two-hidden layer RBF neural network (DRBF) model was proposed. It combined with the dynamic update policies of the network structure for real-time updates to the network structure, and utilized gradient descent to correct parameters of network. This method not only ensure the network structure is most simplified, improved the approximation accuracy and the generalization ability of the network, but also accelerating the speed of network training. The algorithm is applied to non-linear approximation and the loss of classification of the communication enterprise customers, and compared with traditional RBF neural network algorithm, simulation results proved the algorithm is more effecient.
Keywords:two hidden layer RBF  Dynamic updates  the gradient descent method  non-linear approximation  loss of customers
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号