首页 | 本学科首页   官方微博 | 高级检索  
     检索      


In vitro suppression of UGA codons in a mitochondrial mRNA
Authors:A De Ronde  A P Van Loon  L A Grivell  J Kohli
Abstract:Although both prokaryotic and eukaryotic messenger RNAs can be easily translated in heterologous protein-synthesizing systems, attempts to achieve correct synthesis of mitochondrial proteins by translation of mitochondrial mRNAs in such systems have failed. In general, the products of synthesis are of low molecular weight and presumably represent fragments of mitochondrial proteins. These fragments display a strong tendency to aggregate. Explanations have included the use by mitochondria of codons requiring a specialized tRNA population and the fortuitous occurrence within genes of purine-rich sequences resembling bacterial ribosome binding sites. In addition, the long 5'-leader sequences present in many mitochondrial (mt) RNAs may also contribute to difficulties in mRNA recognition by heterologous ribosomes. Recent sequence analysis of human mtDNA suggests that the genetic code used by mammalian mitochondria deviates in a number of respects from the 'universal' code, the most striking of these being the use of the UGA termination codon to specify tryptophan. That this may also apply in yeast mitochondria has been shown by Fox and Macino et al., thus providing an obvious and easily testable explanation for the inability of heterologous systems to synthesize full-length mitochondrial proteins. We confirm this explanation and describe here the in vitro synthesis of a full-length subunit II of yeast cytochrome c oxidase in a wheat-germ extract supplemented with a partially purified mitochondrial mRNA for this protein and a UGA-suppressor tRNA from Schizosaccharomyces pombe.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号