首页 | 本学科首页   官方微博 | 高级检索  
     

纯正半群上的强同余(I)
引用本文:朱浸华,刘敏,魏斌. 纯正半群上的强同余(I)[J]. 四川师范大学学报(自然科学版), 2005, 28(4): 440-443
作者姓名:朱浸华  刘敏  魏斌
作者单位:宜宾学院,数学系,四川,宜宾,644007;绵阳师范学院,计算机科学与工程系,四川,绵阳,621000
摘    要:证明了纯正半群上的所有强同余构成该半群同余格的完备子格,刻画了与强同余对应的核-迹同余对-正规迹、正规子半群(称为强同余对)及其相互关系,由此给出纯正半群上任一强同余的结构,并证明强同余格和强同余对的集合之间一一对应.

关 键 词:强同余  正规迹  正规子半群  强同余对    完备格
文章编号:1001-8395(2005)04-0440-04
收稿时间:2005-01-06
修稿时间:2005-01-06

Strong Congruence on an Orthodox Semigroup I
ZHU Jin-hua,LIU Min,WEI Bin. Strong Congruence on an Orthodox Semigroup I[J]. Journal of Sichuan Normal University(Natural Science), 2005, 28(4): 440-443
Authors:ZHU Jin-hua  LIU Min  WEI Bin
Abstract:The aim of this paper is to study inverse semigroup congruence on an orthodox semigroup S(which we called it strong). It is proved that the set C()P()(S) of all strong congrunces on S forms a complete sublattice of the congruence lattice C()(S) of S. Furthermore, the kernel-trace congrunce pairs corresponding to the strong congruences, i.e., normal traces, normal subsemigroups as well as the relationship between them (called strong congrunce pairs) are characterized. By using these, a structure theorem for an arbitrary strong congruence on S is given. It is also proved that there exists a bijection between the lattice C()P()(S) and the set of all strong congrunce pairs of the orthodox semigroiup S.
Keywords:Strong congruence  Normal traces  Normal subsemigroups  Strong congruence pairs  Lattice  Complete sublattice
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号