首页 | 本学科首页   官方微博 | 高级检索  
     

Hermite广义反Hamilton矩阵反问题的最小二乘解
引用本文:钱爱林,吴又胜. Hermite广义反Hamilton矩阵反问题的最小二乘解[J]. 兰州理工大学学报, 2005, 31(4): 138-140
作者姓名:钱爱林  吴又胜
作者单位:咸宁学院,数学系,湖北,咸宁,437005;兰州大学,数学系,甘肃,兰州,730000;咸宁学院,数学系,湖北,咸宁,437005
摘    要:讨论了Hermite广义反Hamilton矩阵反问题的最小二乘解,得到了解的具体表达式.并讨论了用Hemlite广义反Hamilton矩阵构造给定矩阵的最佳逼近问题,给出了该问题有解的充要条件和解的表达式。

关 键 词:Hermite广义反Hamilton矩阵  矩阵范数  最佳逼近
文章编号:1000-5889(2005)04-0138-03
收稿时间:2004-10-08
修稿时间:2004-10-08

Least-square solutions of inverse problem for Hermitian and generalized skew-Hamilton Matrices
QIAN Ai-lin,WU You-sheng. Least-square solutions of inverse problem for Hermitian and generalized skew-Hamilton Matrices[J]. Journal of Lanzhou University of Technology, 2005, 31(4): 138-140
Authors:QIAN Ai-lin  WU You-sheng
Abstract:The least-square solutions of the inverse problem of Hermite and generalized skew-Hamilton matrices is discussed, and an expression of the solution is obtained. In addition, a problem of using Hermite and generalized skew-Hamilton matrices to construct the optimalapproximation to a given matrix is discussed, the necessary and sufficient conditions for this problem are derived, and the expression of the solution is given.
Keywords:Hermite and generalized skew-Hamilton matrices   matrix norm   optimal approximation
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号