首页 | 本学科首页   官方微博 | 高级检索  
     

基于多特征融合卷积神经网络的人脸表情识别
引用本文:王建霞,陈慧萍,李佳泽,张晓明. 基于多特征融合卷积神经网络的人脸表情识别[J]. 河北科技大学学报, 2019, 40(6): 540-547
作者姓名:王建霞  陈慧萍  李佳泽  张晓明
作者单位:河北科技大学信息科学与工程学院,河北石家庄,050018
基金项目:河北省自然科学基金(F2018208116)
摘    要:针对卷积神经网络特征提取不够充分且识别率低等问题,提出了一种多特征融合卷积神经网络的人脸表情识别方法。首先,为了增加网络的宽度和深度,在网络中引入Inception结构来提取特征的多样性;然后,将提取到的高层次特征与低层次特征进行融合,利用池化层的特征,将融合后的特征送入全连接层,对其特征进行融合处理来增加网络的非线性表达,使网络学习到的特征更加丰富;最后,输出层经过Softmax分类器对表情进行分类,在公开数据集FER2013和CK+上进行实验,并且对实验结果进行分析。实验结果表明:改进后的网络结构在FER2013和CK+数据集的面部表情上,识别率分别提高了0.06%和2.25%。所提方法在人脸表情识别中对卷积神经网络设置和参数配置方面具有参考价值。

关 键 词:计算机图像处理  面部表情识别  卷积神经网络  特征融合  特征提取  表情分类
收稿时间:2019-09-09
修稿时间:2019-10-22

Facial expression recognition based on multi-feature fusion convolution network
WANG Jianxi,CHEN Huiping,LI Jiaze and ZHANG Xiaoming. Facial expression recognition based on multi-feature fusion convolution network[J]. Journal of Hebei University of Science and Technology, 2019, 40(6): 540-547
Authors:WANG Jianxi  CHEN Huiping  LI Jiaze  ZHANG Xiaoming
Abstract:Aiming at the problem of insufficient feature extraction and low recognition rate of convolutional neural network, a novel facial expression recognition method based on multi-feature fusion convolutional neural network is proposed. First, to increase the width and depth of the network, Inception architecture is introduced into the network to extract the diversity of features; Then, the extracted high-level features are fused with the low-level features, and the pooled features are used to send the fused features into the full connection layer, then the fused features are processed to increase the non-linear expression of the network and enrich the features learned by the network. Finally, the output layer classifies the expressions by Softmax classifier, conductes experiments on FER2013 and CK+, and analyzes the experimental results. Experimental results show that the improved network structure improves the recognition rate of facial expressions in FER2013 and CK+ data sets by 006% and 225%, respectively. The proposed method is valuable for setting up convolution neural network and parameter configuration in facial expression recognition.
Keywords:computer image processing   facial expression recognition   convolutional neural network   feature fusion   feature extraction   expression classification
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《河北科技大学学报》浏览原始摘要信息
点击此处可从《河北科技大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号