首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A history of the axiomatic formulation of probability from Borel to Kolmogorov: Part I
Authors:Jack Barone  Albert Novikoff
Institution:(1) Department of Mathematics, New York University, USA
Abstract:This paper, the first of two, traces the origins of the modern axiomatic formulation of Probability Theory, which was first given in definitive form by Kolmogorov in 1933. Even before that time, however, a sequence of developments, initiated by a landmark paper of E. Borel, were giving rise to problems, theorems, and reformulations that increasingly related probability to measure theory and, in particular, clarified the key role of countable additivity in Probability Theory.This paper describes the developments from Borel's work through F. Hausdorff's. The major accomplishments of the period were Borel's Zero-One Law (also known as the Borel-Cantelli Lemmas), his Strong Law of Large Numbers, and his Continued Fraction Theorem. What is new is a detailed analysis of Borel's original proofs, from which we try to account for the roots (psychological as well as mathematical) of the many flaws and inadequacies in Borel's reasoning. We also document the increasing realization of the link between the theories of measure and of probability in the period from G. Faber to F. Hausdorff. We indicate the misleading emphasis given to independence as a basic concept by Borel and his equally unfortunate association of a Heine-Borel lemma with countable additivity. Also original is the (possible) genesis we propose for each of the two examples chosen by Borel to exhibit his new theory; in each case we cite a now neglected precursor of Borel, one of them surely known to Borel, the other, probably so. The brief sketch of instances of the ldquoCantellirdquo lemma before Cantelli's publication is also original.We describe the interesting polemic between F. Bernstein and Borel concerning the Continued Fraction Theorem, which serves as a rare instance of a contemporary criticism of Borel's reasoning. We also discuss Hausdorff's proof of Borel's Strong Law (which seems to be the first valid proof of the theorem along the lines sketched by Borel).In retrospect, one may ask why problems of ldquogeometricrdquo (or ldquocontinuousrdquo) probability did not give rise to the (Kolmogorov) view of probability as a form of measure, rather than the study of repeated independent trials, which was Borel's approach. This paper shows that questions of ldquogeometricrdquo probability were always the essential guide to the early development of the theory, despite the contrary viewpoint exhibited by Borel's preferred interpretation of his own results.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号