一致收敛下极限系统的传递性研究 |
| |
引用本文: | 秦斌,;严可颂,;徐雪群. 一致收敛下极限系统的传递性研究[J]. 广西师范学院学报(自然科学版), 2009, 0(3): 10-14 |
| |
作者姓名: | 秦斌, 严可颂, 徐雪群 |
| |
作者单位: | [1]广西财经学院数学与统计系,广西南宁530003; [2]柳州师范高等专科学校数学与计算机科学系,广西柳州545004; [3]广西大学数学与信息科学学院,广西南宁530004 |
| |
基金项目: | 国家自然科学基金项目(10661001);广西自然科学基金(0897012,0832275);广西教育厅基金(200807MS001);广西财经学院科研项目(20091302);柳州师专自然科学基金(LSZ2007A003) |
| |
摘 要: | 首先讨论了在强一致收敛下极限系统的轨道闭包、回归点集以及极小点集与序列系统中的相应集合之间的关系,并通过举例说明在一致收敛条件下没有上述相应结果.然后,我们利用这些结果给出了拓扑传递性、极小性及区间上周期点稠密性关于强一致收敛遗传性的不同于文献中曾几平等人的另一种证明.
|
关 键 词: | 强一致收敛 拓扑传递 极小性 弱不交性 几乎等度连续 |
Transitivity of the Limit System under Uniform Convergence |
| |
Affiliation: | QIN Bin , YAN Ke-song, XU Xue-qun(1. Department of Mathematics and Statistics, Guangxi University of Finance and Economics, Nanning 530003, China; 2. Department of Mathematics and Computer Science, Liuzhou Teachers College, Liuzhou 545004, China; 3. Department of Mathematics and Information Science, Guangxi University, Nanning 530004, China) |
| |
Abstract: | In this paper, we first study the relationships of the orbit closure, the recurrence set and minimal points set between the dynamical systems sequence and the limit system under strongly uniform convergence, and give some counterexamples to show they are wrong under uniform convergence. Then, we use another method that different from Zeng Fan-ping, et al's to prove the topological transitivity, the minimality and the denseness of the oeriodic in interval can be inherted bv strongly uniform convergence. |
| |
Keywords: | strongly uniform convergence topological transitive minimatity weak disjointness almost equicontinuous |
本文献已被 维普 等数据库收录! |
|