首页 | 本学科首页   官方微博 | 高级检索  
     

尿沉渣图像的小波变换与二维最大熵阈值分割算法
引用本文:印勇,赵少敏. 尿沉渣图像的小波变换与二维最大熵阈值分割算法[J]. 重庆大学学报(自然科学版), 2010, 33(4): 92-97
作者姓名:印勇  赵少敏
作者单位:重庆大学,通信工程学院,重庆,400044 
基金项目:重庆市自然科学基金,重庆大学"211工程"三期建设资助项目 
摘    要:针对尿沉渣图像的复杂散焦以及背景和目标区分度低、有形成分复杂,从而导致尿沉渣有形成分分割困难的问题,提出了一种组合分割方法。首先采用小波变换消除散焦影响,再结合数学形态学方法对图像中目标成分进行定位,分割出子图像,最后利用基于小波变换图像分割和二维最大熵阈值分割的组合分割方法对子图像中不同特点的尿沉渣有形成分分别进行分割,极大的提高了分割的精度。实验结果表明,该方法能够精确有效地实现尿沉渣图像有形成分的分割。

关 键 词:尿沉渣有形成分  图像分割  小波变换  数学形态学  二维最大熵
收稿时间:2009-12-10

Segmentation algorithm for urinary sediment image combining wavelet transform and 2D-Maximum entropy threshold
YIN Yong and Zhao Shao min. Segmentation algorithm for urinary sediment image combining wavelet transform and 2D-Maximum entropy threshold[J]. Journal of Chongqing University(Natural Science Edition), 2010, 33(4): 92-97
Authors:YIN Yong and Zhao Shao min
Affiliation:College of Communication Engineering, Chongqing University, Chongqing 400044, P.R. China;College of Communication Engineering, Chongqing University, Chongqing 400044, P.R. China
Abstract:In order to solve the problem that urine sediment visible components cannot be segmented effectively because of complex components, complicated defocusing in image and poor discrimination between object and background, a method based on combination algorithm wis designed to segment urine sediment. The wavelet transform wis used to erase the effect of defocusing. Then morphology wis utilized to get the subimages that include the particles. The segmentation method combining the wavelet transform based segmentation and the two dimensional entropy threshold based segmentation wis employed to segment urine sediment visible components. Experimental results show that the proposed method can segment urinary sediment images effectively and precisely.
Keywords:urinary sediment visible components  image segmentation  wavelet transform  mathematical morphology  2D-maximum entropy
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《重庆大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《重庆大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号