首页 | 本学科首页   官方微博 | 高级检索  
     

改进YOLOv4的复杂交通场景目标检测方法
引用本文:袁小平,王准,韩俊,陈烨. 改进YOLOv4的复杂交通场景目标检测方法[J]. 科学技术与工程, 2023, 23(6): 2509-2517
作者姓名:袁小平  王准  韩俊  陈烨
作者单位:中国矿业大学
基金项目:国家自然科学基金面上项目(32171241);国家科技支撑计划(2013BAK06B08)
摘    要:针对复杂交通场景下密集小目标居多、目标尺寸差异大、目标间遮挡严重的问题,提出了一种基于YOLOv4框架的复杂交通场景下的目标检测算法。首先,构造多尺度特征融合提取模块作为主干网络特征提取模块,充分提取不同尺度目标特征信息,同时引入轻量化Ghost模块对主干网络特征进行维度调整;其次,将卷积模块与自注意力机制融合,构造倒残差自注意力模块应用到主干网络深层,深层网络在充分提取局部特征信息基础上获得了全局感知;然后,构造轻量级混合注意力模块,抑制背景噪声,增强密集小目标检测能力;最后,在Udacity数据集上进行实验,检测精度达到了84.41%,相比较YOLOv4, mAP(mean average precision)提高了3.07%,对1 920×1 200分辨率图像的检测FPS(frames per second)可达到49,提高了22.5%,精度提升的前提下实现了较好的实时性,更适用于复杂交通场景下的目标检测任务。

关 键 词:目标检测  YOLOv4  多尺度特征  注意力机制
收稿时间:2022-07-07
修稿时间:2023-03-02

Improved YOLOv4 target detection method for complex traffic scenes
Yuan Xiaoping,Wang Zhun,Han Jun,Chen Ye. Improved YOLOv4 target detection method for complex traffic scenes[J]. Science Technology and Engineering, 2023, 23(6): 2509-2517
Authors:Yuan Xiaoping  Wang Zhun  Han Jun  Chen Ye
Affiliation:China University of Mining and Technology
Abstract:Aiming at the problems of most dense small targets, large target size differences and serious inter-target occlusion in complex traffic scenes, a target detection algorithm based on YOLOv4 framework for complex traffic scenes is proposed. Firstly, the multi-scale feature fusion extraction module is constructed as the backbone network feature extraction module to fully extract the target feature information at different scales, while the light-weight Ghost module is introduced to dimensionally adjust the backbone network features; secondly, the convolution module is fused with the self-attention mechanism to construct the inverse residual self-attention module to be applied to the deeper layer of the backbone network, and the deeper network obtains global perception based on fully extracting the local feature information; then, the global perception is obtained; then, the lightweight hybrid attention module is constructed to suppress the background noise and enhance the dense small target detection; finally, experiments were conducted on the Udacity dataset, and the detection accuracy reached 84.41%, compared with YOLOv4, the mAP (mean average precision) was improved by 3.07%, and the detection FPS (frames per second) for 1920×1200 resolution images reached 49, which was improved by 22.5%. The accuracy is improved with better real-time performance, which is more suitable for target detection tasks in complex traffic scenes.
Keywords:target detection   YOLOv4   multi-scale features   attention mechanisms
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号