首页 | 本学科首页   官方微博 | 高级检索  
     

立方图中的路因子和圈因子
引用本文:杜彩凤. 立方图中的路因子和圈因子[J]. 科学技术与工程, 2010, 10(27)
作者姓名:杜彩凤
作者单位:中国石油大学(华东),东营,257061
摘    要:给定连通图集合Φ,对图G的生成子图F,如果F的每个分支都同构于集合Φ的一个元素,则F被称为G的Φ-因子.最近Kawarabayashi 等证明了:2-连通立方图有一个{Cn|n≥4}-因子和{pn|n≥6}-因子,其中Cn表示阶为n的圈,Pn表示阶为n的路.Kano等给出了每一个阶至少为8的立方偶图有{Cn|n≥6}-因子和{pn|n≥8}-因子的结论,并且提出猜想:阶至少为6的3-连通立方图有{Cn|n≥5}-因子和{pn|n≥7}-因子.现给出这个猜想的证明.

关 键 词:路因子  圈因子  立方图  正则图
收稿时间:2010-07-17
修稿时间:2010-07-17

Path and cycle factors of cubic graphs
Du caifeng. Path and cycle factors of cubic graphs[J]. Science Technology and Engineering, 2010, 10(27)
Authors:Du caifeng
Affiliation:DU Cai-feng(China University of Petroleum,Dongying 257061,P.R.China)
Abstract:For a set of connected graphs, a spanning subgraph of a graph is called an -factor if every component of is isomorphic to a member of . It was recently shown by Kawarabayashi et al. that every 2-connected cubic graph has a -factor and -factor, where denote the cycle of order n and denote the path of order n. Kano et al. show that every connected cubic bipartite graph has a -factor and -factor if its order is at least 8. And they have conjectured that every 3-connected cubic graph of order at least six has a -factor. In this paper, we give a proof of this conjecture.
Keywords:path factor cycle factor cubic graph regular graph  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号