首页 | 本学科首页   官方微博 | 高级检索  
     

基于SIFT的UAV载组合宽角相机影像匹配方法
引用本文:解斐斐,林宗坚,桂德竹. 基于SIFT的UAV载组合宽角相机影像匹配方法[J]. 吉林大学学报(信息科学版), 2014, 32(1): 56-63
作者姓名:解斐斐  林宗坚  桂德竹
作者单位:1. 武汉大学 遥感信息工程学院, 武汉 430079; 2. 中国测绘科学研究院 重点实验室, 北京 100039;3. 国家测绘局 测绘发展研究中心, 北京 100830
基金项目:国家863计划重点基金资助项目(2008AA121305);国家自然科学基金资助项目(41071286;41371425)
摘    要:针对无人驾驶飞机UAV(Unmanned Aerial Vehicle)航空组合相机获取的大像幅影像旋偏角较大、 大尺度变化和颜色差异明显的问题, 提出基于极几何和单应约束的SIFT(Scale Invariant Feature Transform)特征多尺度LSM(Least Squares Matching)算法。该算法顶层金字塔影像采用SIFT快速匹配, 对匹配结果利用改进的RANSAC(Random Sample Consensus)算法计算影像间单应矩阵和基本矩阵; 对影像进行Harris特征提取, 根据极几何和单应约束采用双向一致性相关系数算法进行密集匹配; 通过更新单应矩阵, 设定阈值删除误匹配点; 对匹配的同名点进行最小二乘匹配获取子像素级精度。通过对具有较大旋偏角、 大尺度变化和颜色差异的3组实际航摄影像的试验对比表明, 与传统方法相比, 该算法具有较高的匹配成功率和较好的有效性。

关 键 词:无人驾驶飞机  影像匹配  SIFT特征  RANSAC算法  几何约束  
收稿时间:2013-08-28

Image Matching Method Based on SIFT for UAV Images from Combined Large Frame Camera
XIE Fei-fei,LIN Zong-jian,GUI De-zhu. Image Matching Method Based on SIFT for UAV Images from Combined Large Frame Camera[J]. Journal of Jilin University:Information Sci Ed, 2014, 32(1): 56-63
Authors:XIE Fei-fei  LIN Zong-jian  GUI De-zhu
Affiliation:1. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China;2. Key Laboratory, Chinese Academy of Surveying and Mapping, Beijing 100039, China;3. Development Research Center for Surveying & Mapping, State Bureau of Surveying & Mapping, Beijing 100830, China
Abstract:In order to solve the problems in the characteristics of UAV(Unmanned Aerial Vehicle) image with large frame, i.e., large rotation angle, large difference in scales an
d color difference, a matching method named multi-scale LSM(Least Squares Matching) algorithm based on SIFT (Scale Invariant Feature Transform) features with epipolar and homography constraints, which can improve the matching success rate is designed. On the top pyramid images, SIFT image matching is done to obtain matching points. The homography matrix and basic matrix are calculated with the matching points by the improved RANSAC(RANdom SAmple Consensus) algorithm. And the harris feature extraction is used to obtain many feature points. According to epipolar and homography constraints two-dimensional concordance correlation coefficient algorithm is used to dense stereo matching. The homography matrix is updated for deleting false matchingpoints by setting threshold. Corresponding image points are used to obtain sub-pixel accuracy by LSM. Based on three groups of comparative tests with actual aerial photograph images, i.e., images with large rotation angle, lager different scales and color difference, it is proved that this method is effective.
Keywords:unmanned aerial vehicle (UAV)  image matching  scale invariant feature transform(SIFT) feature  random sample consensus(RANSAC)  geometrical constraint  
本文献已被 CNKI 等数据库收录!
点击此处可从《吉林大学学报(信息科学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(信息科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号