首页 | 本学科首页   官方微博 | 高级检索  
     

LVQ神经网络方法预测蛋白质结构中的二硫键
引用本文:罗亮,史晓红,许进. LVQ神经网络方法预测蛋白质结构中的二硫键[J]. 系统仿真学报, 2007, 19(9): 2077-2079
作者姓名:罗亮  史晓红  许进
作者单位:华中科技大学控制科学与工程系,湖北武汉,430074
摘    要:在蛋白质结构预测的研究中,一个重要的问题就是正确预测二硫键的连接,二硫键的准确预测可以减少蛋白质构像的搜索空间,有利于蛋白质的3D结构的预测,成功地将LVQ神经网络方法引入蛋白质的二硫键的预测工作中。结果表明蛋白质的二硫键的连接与半胱氨酸的局域序列模式有重要联系,可以由蛋白质的一级结构序列预测该蛋白质的二硫键的连接方式,应用这个方法对蛋白质结构的二硫键进行了预测取得了良好的结果。

关 键 词:蛋白质结构预测  二硫键2  LVQ神经网络
文章编号:1004-731X(2007)09-2077-03
收稿时间:2006-03-31
修稿时间:2006-09-29

Prediction of Disulfide Bonding in Protein Structure Based on LVQ Neural Network Method
LUO Liang,SHI Xiao-hong,XU Jin. Prediction of Disulfide Bonding in Protein Structure Based on LVQ Neural Network Method[J]. Journal of System Simulation, 2007, 19(9): 2077-2079
Authors:LUO Liang  SHI Xiao-hong  XU Jin
Affiliation:Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract:An important problem in protein structure prediction is the correct location of disulfide bonding in proteins. The location of disulfide bonding can strongly reduce the search in the conformational space of protein structure. Therefore the correct prediction of the disulfide bonding starting from the protein residue sequence may also help in predicting its 3D structure. The LVQ artificial neural network method was applied to predict the disulfide bonding of protein structure. We find that the local sequence arrangement of cysteine is of great significance to the disulfide bonding. Therefore the disulfide bonding can be predicted by its primary structure. This method is used to predict disulfide bonding in protein structure and a fine result is got.
Keywords:Matlab
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号