首页 | 本学科首页   官方微博 | 高级检索  
     

一类食饵-捕食扩散模型分析
引用本文:孙军芳,张睿,刘晶,陈梅艳. 一类食饵-捕食扩散模型分析[J]. 齐齐哈尔大学学报(自然科学版), 2007, 23(5): 82-85
作者姓名:孙军芳  张睿  刘晶  陈梅艳
作者单位:兰州交通大学数理与软件工程学院,兰州,730070;兰州交通大学数理与软件工程学院,兰州,730070;兰州交通大学数理与软件工程学院,兰州,730070;兰州交通大学数理与软件工程学院,兰州,730070
摘    要:在两种群相互作用的Lotka-Voherra模型的基础上考虑了一类食饵种群分布在2个斑块:一个斑块上食饵和捕食者相互作用且对捕食者种群进行捕获;而另—个斑块属于食饵保护区.没有捕食者进入且不允许对食饵种群进行捕获.并且食饵种群可以在2个斑块间进行扩散的食饵—捕食模型。讨论了平衡点的存在性,利用Hurwitz判别法证明了平衡点的局部渐近稳定性和通过构造李雅普诺夫函数,得到了平衡点全局渐近稳定的结论。

关 键 词:食饵-捕食  平衡点  全局稳定
文章编号:1007-984X(2007)05-0082-04
修稿时间:2007-06-08

Analysis of a prey-predator model with migration
SUN Jun-fang,ZHANG Rui,LIU Jing,CHEN Mei-yan. Analysis of a prey-predator model with migration[J]. Journal of Qiqihar University(Natural Science Edition), 2007, 23(5): 82-85
Authors:SUN Jun-fang  ZHANG Rui  LIU Jing  CHEN Mei-yan
Abstract:In this paper, we consider a prey-predator system based on Lotka-Volterra model with prey dispersal in a two-patch environment, one is assumed to be a free harvesting zone where harvesting activity to predator species is existent, and prey and predator can interactive, and the other is a reserved zone where harvesting to prey is prohibited and no predator. Also, prey can migrate between the two-patch. The existence of equilibrium of the system is discussed. The local stability of equilibrium has been carried out using Hurwitz criteria. The global asymptotically stability of equilibrium is given by structuring Lyapunov function.
Keywords:prey-predator   equilibrium   global stability
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号