首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于核独立元分析的非线性过程监控方法
引用本文:赵忠盖,刘飞. 一种基于核独立元分析的非线性过程监控方法[J]. 系统仿真学报, 2008, 20(20): 5585-5588
作者姓名:赵忠盖  刘飞
作者单位:江南大学自动化研究所
基金项目:教育部跨世纪优秀人才培养计划,国家高技术研究发展计划(863计划)
摘    要:独立元分析(ICA)在线性过程监控中得到了成功的应用,但是实际工业过程大部分是非线性的.在利用核ICA(KICA)建立过程非线性模型的基础上,根据核技巧,给出了一种高维空间分离矩阵的排序和独立元个数的选择方法,并将监控指标扩展到高雏空间,从而提出-种基于KICA的非线性过程监控方法,解决了ICA对非线性过程监控效果不理想的缺点.以田纳西一伊斯曼过程(TE过程)为例,对比了KICA与ICA的监控效果,结果证明了该方法的优越性.

关 键 词:核独立元分析  过程监控  监控指标  非线性过程

Nonlinear Process Monitoring Method Based on Kernel Independent Component Analysis
ZHAO Zhong-gai,LIU Fei. Nonlinear Process Monitoring Method Based on Kernel Independent Component Analysis[J]. Journal of System Simulation, 2008, 20(20): 5585-5588
Authors:ZHAO Zhong-gai  LIU Fei
Abstract:Independent component analysis (ICA) has been successfully used in the linear processes monitoring,however,most of real industrial processes are nonlinear. Based on kernel ICA (KICA) model,the main contributions are as follows: firstly,a method to sort the rows of demixing matrix was introduced and the number of independent components was determined; secondly,the monitoring indices were extended into high-dimensional space by "kernel trick",and so a nonlinear process monitoring method was proposed. The proposed method avoids the disadvantages of the ICA-based method used in nonlinear process. At last,taking the monitoring of Tennessee-Eastman process (TE process) for example,KICA was compared with ICA,and the results prove the superiority of the proposed method.
Keywords:kernel independent component analysis  process monitoring  monitoring indices  nonlinear process
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号