首页 | 本学科首页   官方微博 | 高级检索  
     

基于混合改进鸟群算法的贝叶斯网络结构学习
引用本文:陈海洋,张娜. 基于混合改进鸟群算法的贝叶斯网络结构学习[J]. 空军工程大学学报(自然科学版), 2021, 22(1): 85-91. DOI: 10.3969/j.issn.1009-3516.2021.01.014
作者姓名:陈海洋  张娜
作者单位:西安工程大学电子信息学院,西安,710048
基金项目:国家自然科学基金(61573285)
摘    要:针对贝叶斯网络结构学习中寻优效率低下、易陷入局部最优的缺陷,提出了一种基于混合改进鸟群算法的贝叶斯网络结构学习算法.首先,通过互信息约束算法迭代初始网络;其次,改进鸟群算法,在经典鸟群算法中加入自适应惯性权重,随着迭代次数的增加动态调整搜索空间、改变收敛速度;最后,将改进的鸟群算法作为搜索策略,进行贝叶斯网络结构寻优.实验结果表明:改进的算法在寻优过程中不仅有较好的准确率和较快的收敛速度,而且具有良好的全局寻优能力.

关 键 词:贝叶斯网络  结构学习  互信息  改进鸟群算法

Bayesian Network Structure Learning Based on Hybrid Improved Bird Swarm Algorithm
CHEN Haiyang,ZHANG Na. Bayesian Network Structure Learning Based on Hybrid Improved Bird Swarm Algorithm[J]. Journal of Air Force Engineering University(Natural Science Edition), 2021, 22(1): 85-91. DOI: 10.3969/j.issn.1009-3516.2021.01.014
Authors:CHEN Haiyang  ZHANG Na
Abstract:Aimed at the problems that efficiency is low in optimization and there are defects easy to fall into local optimum in Bayesian network structure learning, a new Bayesian network structure learning algorithm based on hybrid improved Bird swarm algorithm is proposed. Firstly, the initial network is constrained by Mutual information. Secondly, the Bird swarm algorithm is improved by adding adaptive inertia weight. With the increase of the number of iterations, the adaptive inertia weight is adjusted to dynamically adjust the search space of algorithm and change the convergence speed. Finally, taking the improved Bird swarm algorithm as a search strategy, optimization is given to the structure of Bayesian network. The experimental results show that the proposed algorithm is not only good in accuracy and fast at convergence speed, but also good in global optimization ability.
Keywords:Bayesian network   structural learning   mutual information   improved bird swarm algorithm
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《空军工程大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《空军工程大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号