首页 | 本学科首页   官方微博 | 高级检索  
     

基于混合改进鸟群算法的贝叶斯网络结构学习
作者姓名:陈海洋  张娜
作者单位:西安工程大学电子信息学院,西安,710048
基金项目:国家自然科学基金(61573285)
摘    要:针对贝叶斯网络结构学习中寻优效率低下、易陷入局部最优的缺陷,提出了一种基于混合改进鸟群算法的贝叶斯网络结构学习算法.首先,通过互信息约束算法迭代初始网络;其次,改进鸟群算法,在经典鸟群算法中加入自适应惯性权重,随着迭代次数的增加动态调整搜索空间、改变收敛速度;最后,将改进的鸟群算法作为搜索策略,进行贝叶斯网络结构寻优.实验结果表明:改进的算法在寻优过程中不仅有较好的准确率和较快的收敛速度,而且具有良好的全局寻优能力.

关 键 词:贝叶斯网络  结构学习  互信息  改进鸟群算法
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《空军工程大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《空军工程大学学报(自然科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号