首页 | 本学科首页   官方微博 | 高级检索  
     

改进主成分和K-均值聚类的行驶工况
引用本文:张玉西,苏小会,高广棵,尚煜. 改进主成分和K-均值聚类的行驶工况[J]. 科学技术与工程, 2021, 21(8): 3199-3205. DOI: 10.3969/j.issn.1671-1815.2021.08.032
作者姓名:张玉西  苏小会  高广棵  尚煜
作者单位:西安工业大学计算机科学与工程学院, 西安710032
基金项目:国家地方联合工程实验室(GSYSJ2018012);陕西省教育厅专项科学研究计划(17JK0381)
摘    要:为构建行驶工况,消除K-均值算法对初始聚类中心的敏感性及噪声点的干扰,提出一种改进主成分分析和基于密度的改进K-均值聚类组合方法.结合距离优化法和密度法,构建一种数据集密度度量方法.选取距离较大、密度较高的数据点作为初始聚类中心与候选集,优化聚类结果的同时剔除了孤立点,采用较大贡献因子的特征值进行工况合成,最后对行驶工况油耗进行分析.结果表明,所提方法构建行驶工况的速度-加速度联合分布差异值为1.17%,特征参数平均相对误差较小.可见,合成的行驶工况能够很好地反映某地实际交通道路特征,拟合度较高.

关 键 词:改进主成分分析  改进K-均值聚类  距离优化法  密度法
收稿时间:2019-12-04
修稿时间:2020-12-07

Research on Driving Conditions Based on Improved Principal Component and K-means Clustering
Zhang Yuxi,Su Xiaohui,Gao Guangke,Shang Yu. Research on Driving Conditions Based on Improved Principal Component and K-means Clustering[J]. Science Technology and Engineering, 2021, 21(8): 3199-3205. DOI: 10.3969/j.issn.1671-1815.2021.08.032
Authors:Zhang Yuxi  Su Xiaohui  Gao Guangke  Shang Yu
Affiliation:Xi''an Technological University
Abstract:In order to construct driving conditions and eliminate the interference of K-means algorithm on initial clustering center sensitivity and noise points, this paper proposes an improved principal component analysis and an improved K-means clustering method based on density. Combining distance optimization method and density method, a data set density measurement method is con-structed. In this paper, data points with a larger distance and a higher density are selected as the initial clustering center and candidate set, the outliers are eliminated while optimizing the clustering results, and the eigenvalues of larger contribution factors are used to synthesize operating conditions, and finally the driving conditions Fuel consumption analysis. The results show that the difference value of the joint speed-acceleration distribution of the driving conditions constructed by the proposed method is 1.17%, and the average relative error of the characteristic parameters is small. It can be seen that the synthesized driving conditions can well reflect the characteristics of the actual traffic road in a certain place, and the degree of fit is high.
Keywords:improve principal component analysis   improved K-means clustering   distance optimization   density method
本文献已被 万方数据 等数据库收录!
点击此处可从《科学技术与工程》浏览原始摘要信息
点击此处可从《科学技术与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号