基于支持向量机的云计算资源负载预测模型 |
| |
摘 要: | 为了准确描述云计算资源负载的动态变化趋势,设计了云计算资源负载预测模型。采用混沌分析算法对云计算资源负载的时间序列进行处理,构建云计算资源负载预测的学习样本。采用支持向量机(SVM)建立云计算资源负载的预测模型,并设计了组合核函数,以提高SVM的学习能力。选择灰色模型、反向传播(BP)神经网络、径向基函数(RBF)神经网络、RBF核函数的支持向量机进行云计算资源负载预测的仿真对比实验。结果表明,对单步云计算资源负载预测时,该文模型的预测精度为94.85%,仅低于灰色模型的95.85%;对多步云计算资源负载预测时,该文模型的预测精度最高,为89.17%。
|
本文献已被 CNKI 等数据库收录! |
|