摘 要: | 本文第一部分得出了与文献[1]定理3相对称的结果,是对文献[2]的推广。第二部分,得到下列定理:设R是半素环,C为R的中心(下同),如果对任意x,y∈R,恒有有界正整数m=m(x,y),n=n(x,y),使R满足x~m y~n±y~n x~m∈C,则R是交换环。第三部分,考察了Herstein条件的一种广义形式,得出若整数n(y)>1,则[x,y]~(n(y))-[x,y]∈C是半素环的交换性条件,从而改进了文献[4]的主要结果。最后讨论了Baer半单纯环的几个交换性问题。还得到无非零幂零元素的变(k′,s,t;2)(或(k,s,t;2))-环必交换。
|