首页 | 本学科首页   官方微博 | 高级检索  
     

非光气异氰酸酯热解反应釜流场和温度场的CFD模拟研究
引用本文:何奇奇,贺鹏,王利国,曹妍,陈家强,刘辉,李会泉. 非光气异氰酸酯热解反应釜流场和温度场的CFD模拟研究[J]. 北京化工大学学报(自然科学版), 2020, 47(6): 12-19. DOI: 10.13543/j.bhxbzr.2020.06.002
作者姓名:何奇奇  贺鹏  王利国  曹妍  陈家强  刘辉  李会泉
作者单位:1. 北京化工大学 化学工程学院 化工资源有效利用国家重点实验室, 北京 100029;2. 中国科学院过程工程研究所 中国科学院绿色过程与工程重点实验室, 北京 100190;3. 大连洁净能源创新研究院, 大连 116023;4. 中国科学院大学 化学工程学院, 北京 100049
基金项目:国家自然科学基金(21576272)
摘    要:采用计算流体力学(CFD)方法研究了1 L、1 000 L单层桨和1 000 L双层桨非光气异氰酸酯热解反应釜的流场和温度场,同时研究了N2吹扫对反应釜温度分布和温度变化速率的影响,结果表明:1 L、1 000 L单层桨间歇热解反应釜流体经三叶搅拌桨加速后均分为上下两个循环区,上循环区平均温度高于下循环区平均温度;与1 000 L单层桨热解反应釜相比,1 000 L双层桨热解反应釜的双层桨之间形成了明显的漩涡,且不同搅拌时间下的温度变化情况与1 000 L单层桨热解反应釜模拟结果基本一致,表明多层桨的引入对热解反应釜温度变化速率无明显影响;N2通气速率从0增加到600 mL/min,反应釜内的温度变化速率由0.180℃/s增加到0.215℃/s,因此N2的通入增加了热解反应釜内流体的湍动程度,增大了釜内侧的表面传热系数,导致温度变化速率增加。

关 键 词:二苯甲烷二异氰酸酯(MDI)  计算流体力学(CFD)  反应釜放大  流场  温度场  
收稿时间:2020-03-02

Numerical simulation of the amplification of a non-phosgene isocyanate pyrolysis reactor
HE QiQi,HE Peng,WANG LiGuo,CAO Yan,CHEN JiaQiang,LIU Hui,LI HuiQuan. Numerical simulation of the amplification of a non-phosgene isocyanate pyrolysis reactor[J]. Journal of Beijing University of Chemical Technology, 2020, 47(6): 12-19. DOI: 10.13543/j.bhxbzr.2020.06.002
Authors:HE QiQi  HE Peng  WANG LiGuo  CAO Yan  CHEN JiaQiang  LIU Hui  LI HuiQuan
Affiliation:1. State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029;2. Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190;3. Dalian National Laboratory for Clean Energy, Dalian 116023;4. School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:The flow fields and temperature fields in 1 L, 1 000 L(single impeller), and 1 000 L(double impeller) non-phosgene isocyanate pyrolysis reactor have been studied by the CFD method. The effect of N2 purging on the temperature distribution and heat transfer rate in the reactors was also studied. The results showed that the flow fields in the 1 L and 1 000 L (single impeller) batch pyrolysis reactor can be divided into upper and lower circulation areas by the three blade agitator, and the average temperature of the upper circulation area is higher than that of the lower circulation area. In contrast the 1 000 L (single impeller) pyrolysis reactor, the 1 000 L (double impeller) pyrolysis reactor has an obvious vortex between the double-layer impeller. The temperature changes after different stirring times are consistent with the simulation results for the 1 000 L (single impeller) pyrolysis reactor. The introduction of multi-layer impellers has no obvious effect on the rate of temperature change in the pyrolysis reactor. When the flow rate of N2 increased from 0 to 600 mL/min, the heat transfer rate in the reactor increased from 0.180℃/s to 0.215℃/s. This is because the introduction of N2 increased the degree of turbulence of the fluid in the pyrolysis reactor, leading to an increase of the surface heat transfer coefficient as well as the rate of heat transfer inside the reactor.
Keywords:diphenylmethane diisocyanate (MDI)   computational fluid dynamics (CFD)   reactor amplification   flow field   temperature field
点击此处可从《北京化工大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《北京化工大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号