首页 | 本学科首页   官方微博 | 高级检索  
     

基于潜在低秩图判别分析的高光谱分类
引用本文:马方,赵丽娜,何磊,杨宏伟. 基于潜在低秩图判别分析的高光谱分类[J]. 北京化工大学学报(自然科学版), 2019, 46(4): 116-121. DOI: 10.13543/j.bhxbzr.2019.04.017
作者姓名:马方  赵丽娜  何磊  杨宏伟
作者单位:北京化工大学理学院,北京,100029;北京化工大学信息中心,北京,100029
基金项目:国家自然科学基金(11301021/11571031)
摘    要:提出一种基于潜在低秩图判别分析(LatLGDA)算法,利用数据的自表示对数据的列表示系数矩阵和行表示系数矩阵同时施加低秩约束,得到保留数据结构的亲和矩阵,再与图嵌入模型相结合实现高光谱图像的流形降维并进行分类。与其他基于稀疏图或稀疏低秩图的高光谱特征提取算法相比,LatLGDA可利用数据的行信息弥补列信息的不足或缺失,对噪音的抗干扰能力更强;在真实数据集上的实验结果表明,LatLGDA算法具有较高的分类精度和运算效率,应用前景广阔。

关 键 词:稀疏图  稀疏低秩图  高光谱分类
收稿时间:2018-12-13

Hyperspectral image classification based on latent low-rank graphs
MA Fang,ZHAO LiNa,HE Lei,YANG HongWei. Hyperspectral image classification based on latent low-rank graphs[J]. Journal of Beijing University of Chemical Technology, 2019, 46(4): 116-121. DOI: 10.13543/j.bhxbzr.2019.04.017
Authors:MA Fang  ZHAO LiNa  HE Lei  YANG HongWei
Affiliation:1. Faculty of Science, Beijing University of Chemical Technology, Beijing 100029, China;2. Center for Information Technology, Beijing University of Chemical Technology, Beijing 100029, China
Abstract:In this paper, latent low-rank graph discrimination analysis (LatLGDA) is proposed. Our algorithm uses self-representation of the data to apply low-rank constraints to the column and row representation coefficient matrix in order to obtain the affinity matrix of the retained data structure. Combined with a graph embedding model, both manifold dimension reduction and classification of hyperspectral images can be realized. Compared with other hyperspectral feature extraction algorithms based on principles such as sparse graphs or sparse and low-rank graph discrimination analysis, LatLGDA can use the row information data to compensate for the lack of column information and has better resistance to interference from noise. Experiments on a real hyperspectral data set from the University of Pavia demonstrate that LatLGDA has the advantages of high classification accuracy, fast operation efficiency and broad application prospects.
Keywords:sparse graph   sparse and low-rank graph   hyperspectral image classification
本文献已被 万方数据 等数据库收录!
点击此处可从《北京化工大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《北京化工大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号