首页 | 本学科首页   官方微博 | 高级检索  
     

基于ANN 和Boosting 的教学质量评价方法
引用本文:崔荣一,赵亚慧,崔旭,尹哲峰,张振国. 基于ANN 和Boosting 的教学质量评价方法[J]. 吉林大学学报(信息科学版), 2018, 36(5): 545-552
作者姓名:崔荣一  赵亚慧  崔旭  尹哲峰  张振国
作者单位:延边大学a. 工学院; b. 教务处,吉林 延吉133002
基金项目:吉林省高等教育教学改革立项基金资助项目( 吉教高字[2012]45 号) ; 吉林省高等教育学会高教科研基金资助项目( 吉高学会[2017]9 号)
摘    要:针对学校教学质量传统评价方法中存在的线性化、静态化等缺陷,提出了更加客观、合理的智能评价方法。利用人工神经网络设计了智能评价器的方案,实现了评价因素到结果的非线性映射,采用不同时期发生的评价数据,通过机器学习方法确定当前阶段各评价因素对评价结果的作用参数,使动态权重能够适应不同时期的评价取向。评价器采用提升算法( Boosting) 集成3 个子评价器形成智能评价器,并通过多评价器集成运行规则进行智能评价。实践证明此方法相比传统的评价方法更能反映因素与结果之间的复杂关系及其动态特征,获得良好的评价结果。

关 键 词:人工神经网络   提升算法   教学质量评价   非线性动态模型  

Evaluation of Teaching Quality Based on ANN and Boosting
CUI Rongyi,ZHAO Yahui,CUI Xu,YIN Zhefeng,ZHANG Zhenguo. Evaluation of Teaching Quality Based on ANN and Boosting[J]. Journal of Jilin University:Information Sci Ed, 2018, 36(5): 545-552
Authors:CUI Rongyi  ZHAO Yahui  CUI Xu  YIN Zhefeng  ZHANG Zhenguo
Affiliation:a. College of Engineering; b. Educational Technology Center,Yanbian University,Yanji 133002,China
Abstract:To overcome the shortcomings of traditional approach to teaching quality evaluation of university,a more objective and reasonable intelligent evaluation method is proposed. According to the shortcomings of linear and static properties of traditional evaluation model,an implementation scheme of intelligent evaluator is proposed using ANN ( Artificial Neural Network) . The training sample set of the intelligent evaluator is constructed with the data produced by traditional model. The 3 sub-evaluators are integrated with boosting to compose the intelligent evaluator,and the running rules of the evaluator is described. It is verified by practice that the proposed method better reflects the complex and dynamic relation between factors and results,andproduces good evaluation results.
Keywords:artificial neural network   Boosting   teaching quality evaluation   non-linear dynamitic model  
点击此处可从《吉林大学学报(信息科学版)》浏览原始摘要信息
点击此处可从《吉林大学学报(信息科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号