首页 | 本学科首页   官方微博 | 高级检索  
     

基于相似度网络融合的极化SAR图像地物分类
作者姓名:张月  邹焕新  邵宁远  秦先祥  周石琳  计科峰
作者单位:1. 国防科学技术大学电子科学与工程学院, 湖南 长沙 410073; 2. 空军工程大学信息与导航学院, 陕西 西安 710077
摘    要:从极化合成孔径雷达(synthetic aperture radar, SAR)图像中提取多种特征向量堆叠成一个高维特征向量用于地物分类,将导致部分特征向量的分类能力减弱或丧失。针对此问题,将每种特征向量看作为不同视角数据,提出了一种基于一致相似度网络融合的极化SAR图像非监督地物分类方法。首先,将极化SAR图像进行过分割,基于超像素提取5种特征向量以构建5个相似度矩阵;其次,采用一致相似度网络融合多视学习算法生成融合的相似度矩阵;然后,基于该矩阵进行谱聚类;最后,提出一种分类后处理策略修正错分像素。仿真和实测极化SAR图像地物分类结果表明,该方法性能优于其他5种经典方法。

点击此处可从《系统工程与电子技术》浏览原始摘要信息
点击此处可从《系统工程与电子技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号