首页 | 本学科首页   官方微博 | 高级检索  
     

基于模糊RBF神经元网络的冷连轧板形板厚多变量控制
引用本文:王莉,葛平,孙一康. 基于模糊RBF神经元网络的冷连轧板形板厚多变量控制[J]. 北京科技大学学报, 2002, 24(5): 556-559. DOI: 10.3321/j.issn:1001-053X.2002.05.020
作者姓名:王莉  葛平  孙一康
作者单位:北京科技大学信息工程学院,北京,100083
摘    要:针对板带材轧制是一个复杂的非线性过程,板形控制(AFC)和板厚控制(AGC)又是相互耦合的一个综合系统等特点,提出了一种基于模糊RBF神经元网络的冷连轧板形板厚多变量综合控制系统.仿真结果证明了此AFC-AGC控制系统具有良好的自适应跟随和抗扰性能,其控制效果优于传统的解耦PID控制.

关 键 词:神经网络控制  板形控制  板厚控制  模糊RBF神经元网络
修稿时间:2001-06-27

Strip Flatness and Gauge Multivariable Control at a Cold Tandem Mill Based on Fuzzy RBF Neural Network
Wang Li,Ge Ping,SUN Yikang Information Engineering School,UST Beijing,Beijing ,China. Strip Flatness and Gauge Multivariable Control at a Cold Tandem Mill Based on Fuzzy RBF Neural Network[J]. Journal of University of Science and Technology Beijing, 2002, 24(5): 556-559. DOI: 10.3321/j.issn:1001-053X.2002.05.020
Authors:Wang Li  Ge Ping  SUN Yikang Information Engineering School  UST Beijing  Beijing   China
Affiliation:Wang Li,Ge Ping,SUN Yikang Information Engineering School,UST Beijing,Beijing 100083,China
Abstract:Strip rolling is a very complicated nonlinear process, and flatness control (AFC) and gauge control (AGC) are a decoupled complex system. A kind of strip flatness and gauge complex control system is presented based on the fuzzy RBF neural network (FRBF) multivariable controller design method. Simulation results show that this kind of new controller has good performances of adaptively tracking target and resisting disturbances and is superior to the conventional decoupled PID control in terms of improving the strip flatness and gauge accuracy.
Keywords:neural network control  flatness control  gauge control  fuzzy RBF neural network
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号